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Overview

@ Motivation: the quantum Stein lemma and its refinements

@ Second-order asymptotics in Stein’s lemma

© Some examples

° Finite sample size quantum hypothesis testing: the i.i.d. case
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Motivation: the quantum Stein lemma and its refinements

Framework

w€E{poc}cC

M

Let # finite dimensional Hilbert space, p,o € D(H)+, set of states on H
Goal is to distinguish between:

p (null hypothesis) and o (alternative hypothesis).
Atestisa POVM {T,1-T}, TeB(H),0<T<1
Errors when guessing are therefore given by:
a(T)=Tr(p(1 —T))  type | error
B(T)=Tr(cT) type Il error

@ Asymmetric case, minimize the type Il error while controlling the type | error:

Ble) = inf_{A(T)] a(T) < .
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Motivation: the quantum Stein lemma and its refinements

Size-dependent hypothesis testing

o Let H, a sequence of Hilbert spaces, {pn}nen, {on}nen € D(Hn)+.

o Examples:
o the i.i.d. case:

Pn = P®" Vs. op =0
o Gibbs states on a lattice A, of size |A,| = n?:
P
B, o PR,

Pni= ——F———— V5. Opi= —————r.
Tr <e_ﬁ"H/f\7n> Tr (e B"H/\n)

o Quasi-free fermions on a lattice etc.

@ Question: Given a uniform bound € on the type | errors, how quickly does 3,(¢)

decrease with n?
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Motivation: the quantum Stein lemma and its refinements

First-order asymptotics

o First proved in the i.i.d. setting

Theorem (Quantum Stein’s lemma Hiai&Petz91, Ogawa&Nagaoka00)

When pn, = p®", and o, = o®",

1
— = log Bn(€) = D(p|lo), Vee€ (0,1), where
n

D(p|lo) = Tr(p(log p — loga)) Umegaki's relative entropy.

r < D(p|lo) =

«

1 =1
lim —=logmin{a(T,): B(Tn) <e "} := sup [r = Da(pllo)],
n—oo n 0<a<l «

r> D(pllo) =

1 —1
lim —=logmax{(1 — a(T,)): B(Th) <e "} = sup @ [r — D% (pllo)], where
n— oo n 1<a (6%
Da(pllo) : = g log Tr(p®o1=%) Rényi-a divergence,
o —
* : 1/2 122 1/2\q : i
D} (pllo) : = g log Tr(p™ /<0 o p/°) sandwiched Rényi-o. divergence.
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Motivation: the quantum Stein lemma and its refinements

Interpretation of Stein's lemma

o !
0 t
D(pllo)
ago) = inf {limsupa(T,): —liminf 1 log B(Tn) > t1}.
0<To<1' 4 non =

1)

o Discontinuity of asg: manifestation of coarse-grained analysis.

@ Question: can we better quantify the behaviour of the asymptotic type | error by
adding a sub-exponential term for the type Il error?!

LLots of generalisations to the non i.i.d. framework: Bjelakovic&Siegmund-Schultze04,
Bjelakovic,&Deuschel&Krueger& Seiler& Siegmund-Schultze& Szkola08, Hiai&Mosonyi&Ogawa08,
Mosonyi&Hiai&Ogawa&Fannes08, Brandao&Pleniol0, Jaksic& Ogata&Pillet&Seiringerl2, etc.



@ Motivation: the quantum Stein lemma and its refinements

@ Second-order asymptotics in Stein's lemma

© Some examples

@ Finite sample size quantum hypothesis testing: the i.i.d. case



Second-order asymptotics in Stein’s lemma

Second-order asymptotics in the i.i.d. case

@ Tomamichel&Hayashil3 and Lil4 proved the following second-order result:

Theorem (Second-order asymptotics: the i.i.d. case Tomamichel&Hayashil3, Li14 )

When p, = p®" and o = o®",
— log Ba(e) = nD(pl|o) + v/msi(€) + Ollog ), s1(e) i= v/ V{plo)®~1(e),
where
V(pllo) = Tr(p(log p — log &)?) — D(p||c)?>  quantum information variance ,
and ® the cumulative distribution function of law N(0, 1).

1
(2)

s

ta
0

(2)(1*2) inf {Ilmsupa(Tn)\ 7I|m|nf \7(Iog,8n(T,7)+nD pllo)) 2t} = o(ta/1/V(pllo)).

0< Tp<1



Second-order asymptotics in Stein’s lemma

Main result 1: Second-order asymptotics in the non-i.i.d. scenario

o For a given strictly increasing sequence of weights w;,, under some conditions
(see later), the quantum information variance rate

. 1
V{pnd An}) = fim_ —V(pallow)
is well-defined, and:
Theorem (DPR16)
Fix € € (0,1). Define

t5(e) = Vv({pn}, {on}) &7}
Then
o Optimality: ¥ t; > t5 () there exists a function fi,(x) = o(+/x) such that Vn € N and any
sequence of tests T,:

— log B(Tn) < D(pnllon) + /Wa ta + fiy (Wn), (1)

o Achievability: ¥V t, < ty(€), Vf(x) = o(+/x), there exists a sequence of test T, such that
for n large enough:

— log 8a(Tn) 2 D(pnllon) + v/Wa ta + f(wa). 2

@ The i.i.d. case of Tomamichel&Hayashil3 and Lil4 follows (Bryc +— CLT). The
Berry-Esseen theorem even provides information on third order:

—log Ba(€) = nD(pllo) + \/aV(pll)® () + O(log n),
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Second-order asymptotics in Stein’s lemma

Key tools 1: the relative modular operator

o The relative modular operator is a generalisation of the Radon-Nikodym
derivative for general von Neuman algebras. In finite dimensions, for two faithful
states, it reduces to:

D, i B(H) = B(H), A~ pAct.

e A, is a positive operator, admits a spectral decomposition.

@ Quantities of relevance can be rewritten in terms of Ama:
D(pllo) = (p"/%,log(A 515 )(0"/?)), where (A, B) = Tr(A"B).
Vs(plo) := log Tr(p' "*0 %) = log(p"/?, A3 (p"/?))

o Define X to be the classical random variable taking values on spec(log A
such that for any measurable f : spec(log A, ;) — R,

/J\U)

(p1/2, f(log A5 )(p*/?)) = E[f(X)].

o f:x— x = E[X] = D(p|lo),
fix e = log E[esX] = log(p/2, &% '8 Aolo (p1/2)) = Wy(p|o), the
cumulant-generating function.
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Second-order asymptotics in Stein’s lemma

Key tools 2: Bryc's theorem

@ The following theorem is a non i.i.d. generalization of the Central limit theorem:

Theorem (Bryc's theorem Bryc93)

Let (Xn)nen be a sequence of random variables, and (wn)n,en an increasing sequence
of weights. If there exists r > 0 such that:

e Vn €N, Hy(z) :=logE [eZX"] is analytic in the complex open ball Bc(0, r),
o H(x) = limp_ o0 wi,, H,(x) exists Vx € (—r,r),
@ SUP,eN SUPzeB:(0,r) Win [Hn(2)| < +oo,

then H is analytic on B¢(0, r) and

Xn— H(0) a 11
e e N (0, H"(0)),

11/
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Second-order asymptotics in Stein’s lemma

The working condition

e Take X associated to log A, |5, p},/2 = Hn(z) = V;(pn|on).

@ The conditions of Bryc's theorem translate into:

Let {wn} an increasing sequence of weights. Assume there exists r > 0 such that
eVneN, z—>V, (p,,\o,,) is analytic in the complex open ball Bc(0, r),
o H(x)=Ilimp—oo o Wn V. (pn|on) exists Vx € (—r,r),

© SUP,en SUP,eB(0,r) Tn [V (pnlon)| < +oo,

e Here H}(0) = D(pnllon),

@ By Bryc's theorem, the quantum information variance rate

Vorhon) = fim —V(pnllow) = H'(0)

is well-defined.
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Second-order asymptotics in Stein’s lemma

Proof of achievability (2)

o We will need the following crucial technical lemma:

Lemma (Li14, DPR16)
Let p,o € Dy (H). For all L > 0 there exists a test T such that

Trp(L = T)) < (72 Papy(By)(e2)  and  THeT) <L (3)
o Let L, :=exp(D(pnllon) + vVWntz + f(wn)), f(x) = o(y/X).
(3) = —logB(Tn) > D(pnllon) + v/wn t2 + f(wn)
oTn) < (pn'/%, Plo.L,) (B, ) Pn*/2),
= <Pn1/27 P(—oo,logL,,)(IOg Apn|an)pn1/2>'

= P(X, < IogLn):P(L(p"HU”) <t f(Wn)>.

/ Wn - / Wn
@ Bryc's theorem = RHS converges to ®(t2/+/v({pn},{on})) < e = for n large

enough,
a(Th) <e.

o Optimality (1) follows similarly from a lower bound on the total error provided by
Jaksic&Ogata&Pillet&Seiringerl2.
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@ Motivation: the quantum Stein lemma and its refinements

© Second-order asymptotics in Stein's lemma

© Some examples

o Finite sample size quantum hypothesis testing: the i.i.d. case

«O)>» «F>»

i
v



Some examples

Quantum spin systems

o Lattice Z9.

@ System prepared at each site:
Vx, Hx = H.

o Example: particle (spin i%):
Hyx = C2.
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Some examples

VX C 29, Hx = ®xexHsx,
Interaction between sites:
b X — ¢X € Bsa(HX).

o & Translation invariant: invariant on
sets of same shape.

$ Finite range:
IR > 0:diam(X) > R= ®x = 0.

o & induces dynamics, with equilibrium
states (Gibbs states):

Hy =Y oy

YCcX
R e P
= .

Tr(ef'BH;)
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Some examples

o Ap:={—n,..,n}7
o Translation invariant, of finite range

‘ m ’ interactions ¢, V.

‘ Ay }J @ Suppose given one of two states

A b, v,
¥ pn = pA,,Bl or op = p/\,,BZ
A
/./ @ Tests performed on Hp,

Proposition (DPR16)

For (1, B2 small enough, p, and o, satisfy the conditions for second order asymptotics
w.r.t. wp = |An|.
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Some examples

Free lattice fermions

One-particle Hilbert space b := /2(Z?), standard basis {e; : i € Z9} (particle
localized at site i).

o Construct the Fock space F(h) = @, cn A" b, where

1
XIN oA Xp = —= sSgN(0)Xs(1) @ .. ® Xg(n)-
1 mag gn(o)xs(1) (n)

Algebra of observables: C* algebra generated by creation and anihilation
operators on the Fock space, obeying the canonical anti-commutation relations:

a(x)aly) +a(y)a(x) =0, a(x)a*(y) +a"(y)a(x) = (x, ¥)1, x,y €b.
@ a*(y): unique linear extension a*(y) : F(h) — F(h) of

a"(y)x1 Ao Axp =y AXLA .. A Xn, a(y) = (@ (y))”

18
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Some examples

Let H € B(h) be a one-particle Hamiltonian, define A := dI'(H) the differential
second quantization on F(h), closure of

n
Ha(x1 A . Axp) = P_ (le ®..® Hx @ ... ®x,,> ,
k=1

where P_ is the projection onto the antisymmetric subspace.

Define the Gibbs state: .
e—hH

H
PR =7~
s Tr (e*ﬁ"’)
Gibbs states are expressed as linear forms on CAR(h) as follows:
H _* eiﬁH
Tr(pBa (x1)...a"(xn)a(ym)...a(y1)) = Omndet((yi, Qxi))ij, Q:
pg’ is called the quasi-free state with symbol Q.

Define the shift operators T; : ej — ejyj, i,j € 79. A symbol which commutes
with all shift operators is said to be shift invariant.

T 1teBH
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Some examples

@ Assume now that we only have access to part of the lattice: denote

An:={0,...,n—1} cz9, ho = I?(As) C b.

Assume given two shift invariant symbols 6 < Q,R <1 —§.
o Denote Q, = PrQPpn, Ry = PoRP,, where P, orthogonal projection onto hy,.

@ The sequences of states that we want to distinguish between are then:
{pn} associated with symbols {Q,} vs. {on} associated with symbols {R,}.
o Dierckx&Fannes&Pogorzelska08: p,, o can be written as:

dimb, k dimb, k

pn = det(1 — Q, op =det(1— R,

Proposition (DPR16)

pn, and o, satisfy the conditions for second order asymptotics w.r.t. wn, = |Ap|.
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@ Finite sample size quantum hypothesis testing: the i.i.d. case

na
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Finite sample size quantum hypothesis testing: the i.i.d. case

Finite sample size bounds of Audenaert&Mosonyi& Verstraetel2

o Practical situations: finitely many copies available.

Theorem (Audenaert&Mosonyi& Verstraetel2)

For pp := p®" and o, := o®",

9 o

A9 < < Llog 4a() < ~D(pll) + £

\/E 5

—D(pllo) —

where
f(e) = 4v2lognlog(1l — €)1, g(e) = 4v2lognloge™?,
andn =1+ e1/2P32(pllo) | =1/2Dy j5(pllo)
@ The ‘second order’ parts of the bounds scale as loge™!, to compare with ®~1(¢)
in the asymptotic case = not tight.

o A better upper bound can be found by means of (non-commutative) martingale
concentration inequalities.
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Finite sample size quantum hypothesis testing: the i.i.d. case

Non-commutative martingales

e A noncommutative probability space is a couple (M, ), where M is a von
Neumann algebra, and 7 a normal tracial state on M. Let A/ be a von Neumann
subalgebra of M. Then there exists a unique map E[.|[N] : M — N/, called
conditional expectation, such that

E1N] =1,
E[AXB|N] = AE[X|N]B, A, BEN, X e M,
E. [TI'A/] =T,
e A noncommutative filtration of M is an increasing sequence {M;}1<j<n of von
Neumann subalgebras of M.

o A martingale is a sequence of noncommutative random variables
{Xj}1<j<n € M" such that for each j,

Xj S Mﬁ
T(1X;]) < o0 (integrability),
E[Xj11|M;] = X; (martingale property).

23

31



Finite sample size quantum hypothesis testing: the i.i.d. case

A noncommutative martingale concentration inequality

Theorem (Noncommutative Azuma inequality, Sadeghi&Moslehian14)
Let {Xj, Mj}1<j<n be a self-adjoint martingale. If —d; < Xj;1 — X; < d; (d; > 0),

P
T(l[a,oo)(xn)) < exp <2Z:"1dz> 5 a > 0.
=15

o Idea (borrowed from Sasonl1l):
o Take pp =p1 ®@ ... ® pn, and 0y =61 @ ... ® &5. Then

n n—1
_ _ ®j L ®n—j—1
Bpnion = QR Bj15; = g B0, = > id¥ ®log Aj 15, ®id¥"
j=1 Jj=0
o Define algebras M generated by id ® log Api‘gi ®id"iL < k.

o (pL/2,(.) p}/?) is a tracial state on M, and (log Ay, 1o, — D(pkllok), M) is a
martingale, where E[.|M] := (P41 ® ... @ pn, ()Pkt1 @ ... @ Pn).
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Finite sample size quantum hypothesis testing: the i.i.d. case

o {logA,, s, — D(pkllok)}1<k<n is a self-adjoint martingale, hence by NC Azuma:

,2
1/2 T2y d?
(on% 11,00 (108(B,15,) = Dlpnlom)) (e *)) < e *57%
o Recall: Vn, L, 3T,:
a(Ta) < (%, Plo.1y (B o)(ow?)) and  B(Ta) < L
Hence,

_ ok Ln=Dlpnllon)?
1/2 1/2 23 df
O(( Tn) < (Pn/ 1P(—oo’|og Ln)(IOg APn|‘7n)(p"/ )> <e = !

=logl, = |2 Z a'j2 Ine=1 + D(pn||on)
j

— on)— .d? €~
= Ba(e) < B(Ty) < & Porllon=y23; fflese™

Il
m
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Finite sample size quantum hypothesis testing: the i.i.d. case

o Remember Audenaert&Mosonyi& Verstraetel2 bound:

log Bn(e) < —nD(pllo) + v/ng(e), g(e) = Kp,o loge ™"

Theorem (DR16)

Suppose given states of the form
n n
:®ﬁj and O'n:®5'j,
=1 =1

where for each j, pj,5; € D(H;)+. Then for each n € N:

n
log 5 (e) < — ZD pilla;) + ([2loge=t D> dZ,  di = |llog Ag 5, — D(AklIEK)loo-
k=1

In the i.i.d. case (pn = p®" vs. on = 0®"),

log Bn(€) < —nD(pllo) + v/nh(e),  h(e) :== v/2loge1d;.
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Finite sample size quantum hypothesis testing: the i.i.d. case

Comparison with Audenaert&Mosonyi& Verstraetel?2

@ Our error scales as: ~ y/loge~1, as opposed to ~ loge™1.

@ We are getting closer to the asymptotic behavior in ~ ®~1(e).

Rates
2k
1 — d(¢)
h(e)
L I L L € s1 (6)
0.2 0.4 06 0.8 1.0
— f(e)
-1}
-2}
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Conclusion

Summary and open questions

@ We studied second order asymptotics as well as finite sample size hypothesis
testing in the asymmetric scenario.

o We proved a theorem providing second order asymptotics for a large class of
quantum systems, including the i.i.d. scenario of Tomamichel&Hayashil3 and
Lil4, as well as states of quantum spin systems and free fermions on a lattice.

@ We found finite sample size bounds on the optimal type Il error in the i.i.d.
scenario using noncommutative martingale concentration inequalities.

@ Open question: Does the martingale approach give bounds in physically relevant
non i.i.d. examples?
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@ Thank you for your attention!
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