On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arXiv:1612.01464

Cambyse Rouzé (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay)

Workshop: Quantum trajectories, parameter and state estimation 23-25 Jan 2017, Toulouse

January 25, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1/31

Motivation: the quantum Stein lemma and its refinements

Second-order asymptotics in Stein's lemma

Some examples

Finite sample size quantum hypothesis testing: the i.i.d. case

<□> <∄> < ≧> < ≧> < ≧> ≧ 2/31

Framework

Let H finite dimensional Hilbert space, ρ, σ ∈ D(H)₊, set of states on H
Goal is to distinguish between:

 $\begin{array}{l}\rho \text{ (null hypothesis)} \quad \text{and} \quad \sigma \text{ (alternative hypothesis).}\\ \bullet \text{ A test is a POVM } \{T, 1 - T\}, \ T \in \mathcal{B}(\mathcal{H}), \ 0 \leq T \leq 1 \end{array}$

• Errors when guessing are therefore given by:

$$\begin{split} \alpha(\mathcal{T}) &= \mathsf{Tr}(\rho(\mathbf{1} - \mathcal{T})) \qquad \text{type I error} \\ \beta(\mathcal{T}) &= \mathsf{Tr}(\sigma\mathcal{T}) \qquad \text{type II error} \end{split}$$

Asymmetric case, minimize the type II error while controlling the type I error:

$$\beta(\epsilon) = \inf_{0 \le T \le 1} \{\beta(T) \mid \alpha(T) \le \epsilon\}.$$

Size-dependent hypothesis testing

- Let \mathcal{H}_n a sequence of Hilbert spaces, $\{\rho_n\}_{n\in\mathbb{N}}, \{\sigma_n\}_{n\in\mathbb{N}} \in \mathcal{D}(\mathcal{H}_n)_+$.
- Examples:
 - the i.i.d. case:

$$\rho_n = \rho^{\otimes n} \quad vs. \quad \sigma_n = \sigma^{\otimes n}.$$

• Gibbs states on a lattice Λ_n of size $|\Lambda_n| = n^d$:

$$\rho_n := \frac{e^{-\beta_\rho H_{\Lambda_n}^\rho}}{\operatorname{Tr} \left(e^{-\beta_\rho H_{\Lambda_n}^\rho} \right)} \quad \text{vs.} \quad \sigma_n := \frac{e^{-\beta_\sigma H_{\Lambda_n}^\sigma}}{\operatorname{Tr} \left(e^{-\beta_\sigma H_{\Lambda_n}^\sigma} \right)}.$$

- Quasi-free fermions on a lattice etc.
- Question: Given a uniform bound ϵ on the type I errors, how quickly does $\beta_n(\epsilon)$ decrease with n?

4 / 31

First-order asymptotics

• First proved in the i.i.d. setting

Theorem (Quantum Stein's lemma Hiai&Petz91, Ogawa&Nagaoka00)

When $\rho_n = \rho^{\otimes n}$, and $\sigma_n = \sigma^{\otimes n}$,

$$-\frac{1}{n}\log\beta_n(\epsilon) \to D(\rho\|\sigma), \quad \forall \epsilon \in (0,1), \text{ where}$$
$$D(\rho\|\sigma) = \operatorname{Tr}(\rho(\log \rho - \log \sigma)) \quad Umegaki's \text{ relative entropy.}$$

$$\begin{aligned} r < D(\rho \| \sigma) \Rightarrow \\ \lim_{n \to \infty} -\frac{1}{n} \log \min\{\alpha(T_n) : \beta(T_n) \le e^{-nr}\} &:= \sup_{0 < \alpha < 1} \frac{\alpha - 1}{\alpha} [r - D_\alpha(\rho \| \sigma)], \\ r > D(\rho \| \sigma) \Rightarrow \\ \lim_{n \to \infty} -\frac{1}{n} \log \max\{(1 - \alpha(T_n)) : \beta(T_n) \le e^{-nr}\} = \sup_{1 < \alpha} \frac{\alpha - 1}{\alpha} [r - D_\alpha^*(\rho \| \sigma)], \text{ where} \\ D_\alpha(\rho \| \sigma) &:= \frac{1}{\alpha - 1} \log \operatorname{Tr}(\rho^\alpha \sigma^{1 - \alpha}) \\ D_\alpha^*(\rho \| \sigma) &:= \frac{1}{\alpha - 1} \log \operatorname{Tr}(\rho^{1/2} \sigma^{\frac{1 - \alpha}{\alpha}} \rho^{1/2})^\alpha \\ \end{bmatrix}$$
 sandwiched Rényi- α divergence.

Motivation: the quantum Stein lemma and its refinements

Interpretation of Stein's lemma

- Discontinuity of $\alpha_{\infty}^{(1)}$: manifestation of coarse-grained analysis.
- Question: can we better quantify the behaviour of the asymptotic type I error by adding a sub-exponential term for the type II error?¹

Some examples

Finite sample size quantum hypothesis testing: the i.i.d. case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで 7/31

Second-order asymptotics in the i.i.d. case

• Tomamichel&Hayashi13 and Li14 proved the following second-order result:

Theorem (Second-order asymptotics: the i.i.d. case Tomamichel&Hayashi13, Li14)

When
$$\rho_n = \rho^{\otimes n}$$
 and $\sigma_n = \sigma^{\otimes n}$

$$-\log \beta_n(\epsilon) = nD(\rho \| \sigma) + \sqrt{n}s_1(\epsilon) + \mathcal{O}(\log n), \quad s_1(\epsilon) := \sqrt{V(\rho \| \sigma)} \Phi^{-1}(\epsilon),$$

where

$$V(
ho \| \sigma) = \mathsf{Tr}(
ho (\log
ho - \log \sigma)^2) - D(
ho \| \sigma)^2$$
 quantum information variance

and Φ the cumulative distribution function of law $\mathcal{N}(0,1)$.

Main result 1: Second-order asymptotics in the non-i.i.d. scenario

• For a given strictly increasing sequence of weights w_n , under some conditions (see later), the quantum information variance rate

$$v(\{\rho_n\},\{\sigma_n\}) = \lim_{n\to\infty} \frac{1}{w_n} V(\rho_n \| \sigma_n)$$

is well-defined, and:

Theorem (DPR16)

Fix $\epsilon \in (0, 1)$. Define

$$t_2^*(\epsilon) = \sqrt{v(\{\rho_n\}, \{\sigma_n\})} \Phi^{-1}(\epsilon).$$

Then

• Optimality: $\forall t_2 > t_2^*(\epsilon)$ there exists a function $f_{t_2}(x) = o(\sqrt{x})$ such that $\forall n \in \mathbb{N}$ and any sequence of tests T_n :

$$-\log\beta(T_n) \le D(\rho_n||\sigma_n) + \sqrt{w_n} t_2 + f_{t_2}(w_n), \tag{1}$$

Achievability: ∀ t₂ < t₂^{*}(ε), ∀f(x) = o(√x), there exists a sequence of test T_n such that for n large enough:

$$-\log \beta_n(T_n) \ge D(\rho_n || \sigma_n) + \sqrt{w_n} t_2 + f(w_n).$$
⁽²⁾

• The i.i.d. case of Tomamichel&Hayashi13 and Li14 follows (Bryc ← CLT). The Berry-Esseen theorem even provides information on third order:

Key tools 1: the relative modular operator

• The relative modular operator is a generalisation of the Radon-Nikodym derivative for general von Neuman algebras. In finite dimensions, for two faithful states, it reduces to:

$$\Delta_{\rho|\sigma}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \qquad A \mapsto \rho A \sigma^{-1}.$$

- $\Delta_{\rho|\sigma}$ is a positive operator, admits a spectral decomposition.
- Quantities of relevance can be rewritten in terms of Δ_{ρ|σ}:

$$\begin{split} D(\rho \| \sigma) &= \langle \rho^{1/2}, \log(\Delta_{\rho|\sigma})(\rho^{1/2}) \rangle, \qquad \text{where } \langle A, B \rangle = \mathsf{Tr}(A^*B). \\ \Psi_s(\rho|\sigma) &:= \log \mathsf{Tr}(\rho^{1+s}\sigma^{-s}) = \log \langle \rho^{1/2}, \Delta_{\rho|\sigma}^s(\rho^{1/2}) \rangle \end{split}$$

• Define X to be the classical random variable taking values on spec(log $\Delta_{\rho|\sigma}$) such that for any measurable f : spec(log $\Delta_{\rho|\sigma}$) $\rightarrow \mathbb{R}$,

$$\langle \rho^{1/2}, f(\log \Delta_{\rho|\sigma})(\rho^{1/2}) \rangle \equiv \mathbb{E}[f(X)].$$

• $f: x \mapsto x \Rightarrow \mathbb{E}[X] = D(\rho \| \sigma)$, $f: x \mapsto e^{sx} \Rightarrow \log \mathbb{E}[e^{sX}] = \log \langle \rho^{1/2}, e^{s \log \Delta_{\rho \mid \sigma}}(\rho^{1/2}) \rangle \equiv \Psi_s(\rho | \sigma)$, the cumulant-generating function.

Key tools 2: Bryc's theorem

• The following theorem is a non i.i.d. generalization of the Central limit theorem:

Theorem (Bryc's theorem Bryc93)

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables, and $(w_n)_{n \in \mathbb{N}}$ an increasing sequence of weights. If there exists r > 0 such that:

• $\forall n \in \mathbb{N}, H_n(z) := \log \mathbb{E}\left[e^{zX_n}\right]$ is analytic in the complex open ball $B_{\mathbb{C}}(0, r)$,

•
$$H(x) = \lim_{n \to \infty} \frac{1}{w_n} H_n(x)$$
 exists $\forall x \in (-r, r)$,

• $\sup_{n\in\mathbb{N}}\sup_{z\in B_{\mathbb{C}}(0,r)}\frac{1}{w_n}|H_n(z)|<+\infty$,

then H is analytic on $B_{\mathbb{C}}(0,r)$ and

$$rac{X_n-H_n'(0)}{\sqrt{w_n}}\stackrel{\mathrm{d}}{\longrightarrow}_{n
ightarrow\infty}\mathcal{N}ig(0,H''(0)ig),$$

<□> <問> <目> <目> <目> <目> <目> <目> <目</p>

The working condition

- Take X_n associated to $\log \Delta_{\rho_n | \sigma_n}$, $\rho_n^{1/2} \Rightarrow H_n(z) = \Psi_z(\rho_n | \sigma_n)$.
- The conditions of Bryc's theorem translate into:

Condition

Let $\{w_n\}$ an increasing sequence of weights. Assume there exists r > 0 such that

- $\forall n \in \mathbb{N}, z \to \Psi_z(\rho_n | \sigma_n)$ is analytic in the complex open ball $B_{\mathbb{C}}(0, r)$,
- $H(x) = \lim_{n \to \infty} \frac{1}{w_n} \Psi_z(\rho_n | \sigma_n)$ exists $\forall x \in (-r, r)$,

•
$$\sup_{n\in\mathbb{N}}\sup_{z\in B_{\mathbb{C}}(0,r)}\frac{1}{w_n}|\Psi_z(\rho_n|\sigma_n)|<+\infty$$

- Here $H'_n(0) = D(\rho_n \| \sigma_n)$,
- By Bryc's theorem, the quantum information variance rate

$$v(\{\rho_n\},\{\sigma_n\}) = \lim_{n\to\infty} \frac{1}{w_n} V(\rho_n \| \sigma_n) \equiv H''(0)$$

12/31

is well-defined.

Proof of achievability (2)

• We will need the following crucial technical lemma:

Lemma (Li14, DPR16)

Let $\rho, \sigma \in \mathcal{D}_+(\mathcal{H})$. For all L > 0 there exists a test T such that

$$\operatorname{Tr}(\rho(1-T)) \leq \langle \rho^{1/2}, \mathsf{P}_{(0,L)}(\Delta_{\rho|\sigma})(\rho^{1/2}) \rangle \quad \text{and} \quad \operatorname{Tr}(\sigma T) \leq L^{-1}.$$
(3)

• Let
$$L_n := \exp(D(\rho_n \| \sigma_n) + \sqrt{w_n} t_2 + f(w_n)), f(x) = \circ(\sqrt{x}).$$

$$\begin{aligned} (3) \quad \Rightarrow \quad -\log \beta(T_n) \geq D(\rho_n ||\sigma_n) + \sqrt{w_n} t_2 + f(w_n) \\ \alpha(T_n) \leq \left\langle \rho_n^{1/2}, P_{(0,L_n)}(\Delta_{\rho_n |\sigma_n}) \rho_n^{1/2} \right\rangle, \\ \quad &= \left\langle \rho_n^{1/2}, P_{(-\infty, \log L_n)}(\log \Delta_{\rho_n |\sigma_n}) \rho_n^{1/2} \right\rangle. \\ \quad &= \mathbb{P}(X_n \leq \log L_n) = \mathbb{P}\left(\frac{X_n - D(\rho_n ||\sigma_n)}{\sqrt{w_n}} \leq t_2 + \frac{f(w_n)}{\sqrt{w_n}}\right). \end{aligned}$$

• Bryc's theorem \Rightarrow RHS converges to $\Phi(t_2/\sqrt{v(\{\rho_n\},\{\sigma_n\})}) < \varepsilon \Rightarrow$ for *n* large enough,

$$\alpha(T_n) \leq \varepsilon.$$

 Optimality (1) follows similarly from a lower bound on the total error provided by Jaksic&Ogata&Pillet&Seiringer12.

Finite sample size quantum hypothesis testing: the i.i.d. case

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで 14/31

Some examples

Quantum spin systems

- Lattice \mathbb{Z}^d .
- System prepared at each site: $\forall x, \mathcal{H}_x = \mathcal{H}.$
- Example: particle (spin $\pm \frac{1}{2}$): $\mathcal{H}_x = \mathbb{C}^2$.

★ロト ★課 ト ★注 ト ★注 ト 一注

15/31

- $orall X \subset \mathbb{Z}^d, \mathcal{H}_X := \otimes_{x \in X} \mathcal{H}_x$,
- Interaction between sites: $\Phi: X \mapsto \Phi_X \in \mathcal{B}_{sa}(\mathcal{H}_X).$
- Φ **Translation invariant**: invariant on sets of same shape.
- Φ Finite range: $\exists R > 0 : \operatorname{diam}(X) > R \Rightarrow \Phi_X = 0.$
- Φ induces dynamics, with equilibrium states (Gibbs states):

$$\begin{split} H^{\Phi}_X &:= \sum_{Y \subset X} \Phi_Y \\ \rho^{\Phi,\beta}_X &:= \frac{\mathrm{e}^{-\beta H^{\Phi}_X}}{\mathrm{Tr}(\mathrm{e}^{-\beta H^{\Phi}_X})} \end{split}$$

- $\Lambda_n := \{-n, ..., n\}^d$.
- Translation invariant, of finite range interactions Φ, Ψ.
- Suppose given one of two states

$$\rho_n := \rho_{\Lambda_n}^{\Phi,\beta_1} \text{ or } \sigma_n := \rho_{\Lambda_n}^{\Psi,\beta_2}$$

• Tests performed on \mathcal{H}_{Λ_n}

Proposition (DPR16)

For β_1, β_2 small enough, ρ_n and σ_n satisfy the conditions for second order asymptotics w.r.t. $w_n = |\Lambda_n|$.

Some examples

Free lattice fermions

- One-particle Hilbert space h := l²(Z^d), standard basis {e_i : i ∈ Z^d} (particle localized at site i).
- Construct the Fock space $\mathcal{F}(\mathfrak{h}) = \bigoplus_{n \in \mathbb{N}} \bigwedge^n \mathfrak{h}$, where

$$x_1 \wedge ... \wedge x_n = \frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) x_{\sigma(1)} \otimes ... \otimes x_{\sigma(n)}.$$

• Algebra of observables: *C*^{*} algebra generated by creation and anihilation operators on the Fock space, obeying the *canonical anti-commutation relations*:

$$a(x)a(y) + a(y)a(x) = 0$$
, $a(x)a^*(y) + a^*(y)a(x) = \langle x, y \rangle \mathbf{1}$, $x, y \in \mathfrak{h}$.

• $a^*(y)$: unique linear extension $a^*(y) : \mathcal{F}(\mathfrak{h}) \to \mathcal{F}(\mathfrak{h})$ of

$$a^*(y)x_1 \wedge \ldots \wedge x_n = y \wedge x_1 \wedge \ldots \wedge x_n, \qquad a(y) = (a^*(y))^*$$

 Let H ∈ B(h) be a one-particle Hamiltonian, define Ĥ := dΓ(H) the differential second quantization on F(h), closure of

$$H_n(x_1 \wedge ... \wedge x_n) = P_-\left(\sum_{k=1}^n x_1 \otimes ... \otimes Hx_k \otimes ... \otimes x_n\right),$$

where P_{-} is the projection onto the antisymmetric subspace.

• Define the Gibbs state:

$$\rho_{\beta}^{H} = \frac{\mathrm{e}^{-\beta\hat{H}}}{\mathrm{Tr}\left(\mathrm{e}^{-\beta\hat{H}}\right)}$$

• Gibbs states are expressed as linear forms on CAR(h) as follows:

$$\mathsf{Tr}(\rho_{\beta}^{H}a^{*}(x_{1})...a^{*}(x_{n})a(y_{m})...a(y_{1})) = \delta_{mn}\det(\langle y_{i}, Qx_{i}\rangle)_{i,j}, \qquad Q := \frac{e^{-\beta H}}{1 + e^{-\beta H}}$$

- ρ_{β}^{H} is called the quasi-free state with symbol Q.
- Define the *shift operators* T_j : e_i → e_{i+j}, i, j ∈ Z^d. A symbol which commutes with all shift operators is said to be *shift invariant*.

• Assume now that we only have access to part of the lattice: denote

$$\Lambda_n:=\{0,...,n-1\}^d\subset \mathbb{Z}^d,\qquad \mathfrak{h}_n=l^2(\Lambda_n)\subset \mathfrak{h}.$$

- Assume given two shift invariant symbols $\delta < Q, R < 1 \delta$.
- Denote $Q_n = P_n Q P_n$, $R_n = P_n R P_n$, where P_n orthogonal projection onto \mathfrak{h}_n .
- The sequences of states that we want to distinguish between are then:

 $\{\rho_n\}$ associated with symbols $\{Q_n\}$ vs. $\{\sigma_n\}$ associated with symbols $\{R_n\}$.

• Dierckx&Fannes&Pogorzelska08: ρ_n , σ_n can be written as:

$$\rho_n = \det(\mathbf{1} - Q_n) \bigoplus_{k=0}^{\dim \mathfrak{h}_n} \bigwedge^k \frac{Q_n}{\mathbf{1} - Q_n} \qquad \sigma_n = \det(\mathbf{1} - R_n) \bigoplus_{k=0}^{\dim \mathfrak{h}_n} \bigwedge^k \frac{R_n}{\mathbf{1} - R_n}.$$

Proposition (DPR16)

 ρ_n , and σ_n satisfy the conditions for second order asymptotics w.r.t. $w_n = |\Lambda_n|$.

Finite sample size quantum hypothesis testing: the i.i.d. case

Finite sample size bounds of Audenaert&Mosonyi&Verstraete12

- Practical situations: finitely many copies available.
- Theorem (Audenaert&Mosonyi&Verstraete12)

For $\rho_n := \rho^{\otimes n}$ and $\sigma_n := \sigma^{\otimes n}$,

$$-D(\rho \| \sigma) - \frac{f(\epsilon)}{\sqrt{n}} \leq \frac{1}{n} \log \beta_n(\epsilon) \leq -D(\rho \| \sigma) + \frac{g(\epsilon)}{\sqrt{n}},$$

where

$$f(\epsilon) = 4\sqrt{2}\log\eta\log(1-\epsilon)^{-1}, \qquad g(\epsilon) = 4\sqrt{2}\log\eta\log\epsilon^{-1}$$

and $\eta := 1 + e^{1/2D_{3/2}(\rho \| \sigma)} + e^{-1/2D_{1/2}(\rho \| \sigma)}$.

- The 'second order' parts of the bounds scale as log ε⁻¹, to compare with Φ⁻¹(ε) in the asymptotic case ⇒ not tight.
- A better upper bound can be found by means of (non-commutative) martingale concentration inequalities.

Non-commutative martingales

 A noncommutative probability space is a couple (M, τ), where M is a von Neumann algebra, and τ a normal tracial state on M. Let N be a von Neumann subalgebra of M. Then there exists a unique map E[.|N] : M → N, called conditional expectation, such that

$$\begin{split} \mathbb{E}[\mathbf{1}|\mathcal{N}] &= \mathbf{1}, \\ \mathbb{E}[AXB|\mathcal{N}] &= A\mathbb{E}[X|\mathcal{N}]B, \ \ A, B \in \mathcal{N}, \ X \in \mathcal{M}, \\ \mathbb{E}_*[\tau|\mathcal{N}] &= \tau, \end{split}$$

- A noncommutative filtration of *M* is an increasing sequence {*M_j*}_{1≤j≤n} of von Neumann subalgebras of *M*.
- A martingale is a sequence of noncommutative random variables $\{X_j\}_{1 \le j < n} \in \mathcal{M}^n$ such that for each j,

$$\begin{split} &X_j \in \mathcal{M}_j, \\ &\tau(|X_j|) < \infty \qquad (\text{integrability}), \\ &\mathbb{E}[X_{j+1}|\mathcal{M}_j] = X_j \qquad (\text{martingale property}). \end{split}$$

A noncommutative martingale concentration inequality

Theorem (Noncommutative Azuma inequality, Sadeghi&Moslehian14)

Let $\{X_j, \mathcal{M}_j\}_{1 \leq j \leq n}$ be a self-adjoint martingale. If $-d_j \leq X_{j+1} - X_j \leq d_j$ $(d_j > 0)$,

$$au(\mathbf{1}_{[\alpha,\infty)}(X_n)) \leq \exp\left(\frac{-lpha^2}{2\sum_{j=1}^n d_j^2}\right), \qquad \alpha > 0$$

• Idea (borrowed from Sason11):

• Take $\rho_n = \tilde{\rho}_1 \otimes ... \otimes \tilde{\rho}_n$, and $\sigma_n = \tilde{\sigma}_1 \otimes ... \otimes \tilde{\sigma}_n$. Then

$$\Delta_{\rho_n|\sigma_n} = \bigotimes_{j=1}^n \Delta_{\tilde{\rho}_j|\tilde{\sigma}_j} \Rightarrow \log \Delta_{\rho_n|\sigma_n} = \sum_{j=0}^{n-1} \operatorname{id}^{\otimes j} \otimes \log \Delta_{\tilde{\rho}_j|\tilde{\sigma}_j} \otimes \operatorname{id}^{\otimes n-j-1}$$

• Define algebras \mathcal{M}_k generated by $\mathrm{id}^i \otimes \log \Delta_{\rho_i \mid \sigma_i} \otimes \mathrm{id}^{n-i-1}$, $i \leq k$.

• $\langle \rho_n^{1/2}, (.) \rho_n^{1/2} \rangle$ is a tracial state on \mathcal{M}_n , and $(\log \Delta_{\rho_k \mid \sigma_k} - D(\rho_k \mid \mid \sigma_k), \mathcal{M}_k)$ is a martingale, where $\mathbb{E}[.|\mathcal{M}_k] := \langle \tilde{\rho}_{k+1} \otimes ... \otimes \tilde{\rho}_n, (.) \tilde{\rho}_{k+1} \otimes ... \otimes \tilde{\rho}_n \rangle$.

• $\{\log \Delta_{\rho_k | \sigma_k} - D(\rho_k \| \sigma_k)\}_{1 \le k \le n}$ is a self-adjoint martingale, hence by NC Azuma:

$$\langle \rho_n^{1/2}, \mathbf{1}_{(r,\infty)}(\log(\Delta_{\rho_n|\sigma_n}) - D(\rho_n|\sigma_n))(\rho_n^{1/2})\rangle \leq e^{-\frac{r^2}{2\sum_j d_j^2}}$$

• Recall: $\forall n, L_n, \exists T_n$:

$$\alpha(\mathcal{T}_n) \leq \langle \rho_n^{1/2}, P_{(0,L_n)}(\Delta_{\rho_n | \sigma_n})(\rho_n^{1/2}) \rangle \quad \text{and} \quad \beta(\mathcal{T}_n) \leq L_n^{-1}.$$

Hence,

$$\begin{aligned} \alpha(T_n) &\leq \langle \rho_n^{1/2}, P_{(-\infty, \log L_n)}(\log \Delta_{\rho_n | \sigma_n})(\rho_n^{1/2}) \rangle \leq e^{-\frac{(\log L_n - D(\rho_n || \sigma_n))^2}{2\sum_j d_j^2}} \equiv \epsilon \\ \Rightarrow \log L_n &\equiv \sqrt{2\sum_j d_j^2 \ln \epsilon^{-1}} + D(\rho_n || \sigma_n) \\ \Rightarrow \beta_n(\epsilon) &\leq \beta(T_n) \leq e^{-D(\rho_n || \sigma_n) - \sqrt{2\sum_j d_j^2 \log \epsilon^{-1}}}. \end{aligned}$$

• Remember Audenaert&Mosonyi&Verstraete12 bound:

$$\log \beta_n(\epsilon) \leq -nD(\rho \| \sigma) + \sqrt{n}g(\epsilon), \quad g(\epsilon) := K_{\rho,\sigma} \log \epsilon^{-1}.$$

Theorem (DR16)

Suppose given states of the form

$$ho_n = \bigotimes_{j=1}^n \widetilde{
ho}_j \qquad ext{and} \qquad \sigma_n = \bigotimes_{j=1}^n \widetilde{\sigma}_j,$$

where for each j, $\tilde{\rho}_j, \tilde{\sigma}_j \in \mathcal{D}(\mathcal{H}_j)_+$. Then for each $n \in \mathbb{N}$:

$$\log eta_n(\epsilon) \leq -\sum_{j=1}^n D(ilde
ho_j \| ilde\sigma_j) + \sqrt{2\log \epsilon^{-1} \sum_{k=1}^n d_k^2}, \quad d_k := \|\log \Delta_{ ilde
ho_k \| ilde\sigma_k} - D(ilde
ho_k \| ilde\sigma_k) \|_\infty.$$

In the i.i.d. case ($\rho_n = \rho^{\otimes n}$ vs. $\sigma_n = \sigma^{\otimes n}$),

$$\log eta_n(\epsilon) \leq -nD(
ho\|\sigma) + \sqrt{n} ilde{h}(\epsilon), \quad ilde{h}(\epsilon) := \sqrt{2\log \epsilon^{-1}} d_1.$$

Comparison with Audenaert&Mosonyi&Verstraete12

- Our error scales as: $\sim \sqrt{\log \epsilon^{-1}}$, as opposed to $\sim \log \epsilon^{-1}$.
- We are getting closer to the asymptotic behavior in $\sim \Phi^{-1}(\epsilon)$.

Summary and open questions

- We studied second order asymptotics as well as finite sample size hypothesis testing in the asymmetric scenario.
- We proved a theorem providing second order asymptotics for a large class of quantum systems, including the i.i.d. scenario of Tomamichel&Hayashi13 and Li14, as well as states of quantum spin systems and free fermions on a lattice.
- We found finite sample size bounds on the optimal type II error in the i.i.d. scenario using noncommutative martingale concentration inequalities.
- Open question: Does the martingale approach give bounds in physically relevant non i.i.d. examples?

• Thank you for your attention!

References	

References

- Bjelakovic&Siegmund-Schultze04: An ergodic theorem for quantum relative entropy. Comm. Math. Phys. 247, 697 (2004)
- Bjelakovic&Deuschel,&Krueger&Seiler&Siegmund-Schultze&Szkola08: Typical support and Sanov large deviations of correlated states. Comm. Math. Phys. 279, 559 (2008).
- Brandão&Plenio: A Generalization of Quantum Stein's Lemma. Commun. Math. Phys. 295: 791 (2010).
- Datta&Pautrat&Rouze16: Second-order asymptotics for quantum hypothesis testing in settings beyond i.i.d.—quantum lattice systems and more. Journal of Mathematical Physics, 57, 6, 062207 (2016)
- Audenaert&Koenraad&Verstraete12: Quantum state discrimination bounds for finite sample size. Journal of Mathematical Physics, Vol. 53, 122205 (2012).
- Hiai&Mosonyi&Ogawa08: Error exponents in hypothesis testing for correlated states on a spin chain. J. Math. Phys. 49, 032112 (2008).
- Hiai&Petz91: The proper formula for the relative entropy an its asymptotics in quantum probability. Comm. Math. Phys. 143, 99 (1991).

- Jaksic&Ogata&Piller&Seiringer12: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012).
- Li14: Second-order asymptotics for quantum hypothesis testing. Ann. Statist. Volume 42, Number 1, 171-189 (2014).
- Mosonyi&Hiai&Ogawa&Fannes08: Asymptotic distinguishability measures for shiftinvariant quasi-free states of fermionic lattice systems. J. Math. Phys. 49, 032112 (2008).
- Ogawa&Nagaoka00: Strong Converse and Stein's Lemma in the Quantum Hypothesis Testing. IEEE Trans. Inf. Theo. 46, 2428 (2000).
- Sadghi&Moslehian14: Noncommutative martingale concentration inequalities. Illinois Journal of Mathematics, Volume 58, Number 2, 561-575 (2014).
- Sason11: Moderate deviations analysis of binary hypothesis testing. 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, pp. 821-825 (2012).
- Tomamichel&Hayashi13: A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks. IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7693-7710 (2013).