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Motivation: the quantum Stein lemma and its refinements

Framework

Let H finite dimensional Hilbert space, ρ, σ ∈ D(H)+, set of states on H
Goal is to distinguish between:

ρ (null hypothesis) and σ (alternative hypothesis).

A test is a POVM {T , 1− T}, T ∈ B(H), 0 ≤ T ≤ 1
Errors when guessing are therefore given by:

α(T ) = Tr(ρ(1− T )) type I error

β(T ) = Tr(σT ) type II error

Asymmetric case, minimize the type II error while controlling the type I error:

β(ε) = inf
0≤T≤1

{β(T )| α(T ) ≤ ε}.
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Motivation: the quantum Stein lemma and its refinements

Size-dependent hypothesis testing

Let Hn a sequence of Hilbert spaces, {ρn}n∈N, {σn}n∈N ∈ D(Hn)+.

Examples:
the i.i.d. case:

ρn = ρ
⊗n vs. σn = σ

⊗n
.

Gibbs states on a lattice Λn of size |Λn| = nd :

ρn :=
e
−βρH

ρ
Λn

Tr

(
e
−βρH

ρ
Λn

) vs. σn :=
e
−βσHσΛn

Tr
(

e
−βσHσ

Λn

) .
Quasi-free fermions on a lattice etc.

Question: Given a uniform bound ε on the type I errors, how quickly does βn(ε)
decrease with n?
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Motivation: the quantum Stein lemma and its refinements

First-order asymptotics

First proved in the i.i.d. setting

Theorem (Quantum Stein’s lemma Hiai&Petz91, Ogawa&Nagaoka00)

When ρn = ρ⊗n, and σn = σ⊗n,

−
1

n
log βn(ε)→ D(ρ‖σ), ∀ε ∈ (0, 1), where

D(ρ‖σ) = Tr(ρ(log ρ− log σ)) Umegaki’s relative entropy.

r < D(ρ‖σ)⇒

lim
n→∞

−
1

n
log min{α(Tn) : β(Tn) ≤ e−nr} := sup

0<α<1

α− 1

α
[r − Dα(ρ‖σ)],

r > D(ρ‖σ)⇒

lim
n→∞

−
1

n
log max{(1− α(Tn)) : β(Tn) ≤ e−nr} = sup

1<α

α− 1

α
[r − D∗α(ρ‖σ)], where

Dα(ρ‖σ) : =
1

α− 1
log Tr(ρασ1−α) Rényi-α divergence,

D∗α(ρ‖σ) : =
1

α− 1
log Tr(ρ1/2σ

1−α
α ρ1/2)α sandwiched Rényi-α divergence.
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Motivation: the quantum Stein lemma and its refinements

Interpretation of Stein’s lemma

D(ρ||σ)
0

1

t1

α
(1)
∞

α
(1)
∞ = inf

0≤Tn≤1
{lim sup

n
α(Tn) : − lim inf

n

1

n
log β(Tn) ≥ t1}.

Discontinuity of α
(1)
∞ : manifestation of coarse-grained analysis.

Question: can we better quantify the behaviour of the asymptotic type I error by
adding a sub-exponential term for the type II error?1

1Lots of generalisations to the non i.i.d. framework: Bjelakovic&Siegmund-Schultze04,
Bjelakovic,&Deuschel&Krueger&Seiler&Siegmund-Schultze&Szkola08, Hiai&Mosonyi&Ogawa08,
Mosonyi&Hiai&Ogawa&Fannes08, Brandao&Plenio10, Jaksic&Ogata&Pillet&Seiringer12, etc.
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Second-order asymptotics in Stein’s lemma

Second-order asymptotics in the i.i.d. case

Tomamichel&Hayashi13 and Li14 proved the following second-order result:

Theorem (Second-order asymptotics: the i.i.d. case Tomamichel&Hayashi13, Li14 )

When ρn = ρ⊗n and σn = σ⊗n,

− log βn(ε) = nD(ρ‖σ) +
√
ns1(ε) +O(log n), s1(ε) :=

√
V (ρ‖σ)Φ−1(ε),

where

V (ρ‖σ) = Tr(ρ(log ρ− log σ)2)− D(ρ‖σ)2 quantum information variance ,

and Φ the cumulative distribution function of law N (0, 1).

0

1
2

1

t2

α
(2)
∞

α
(2)
∞(t2) = inf

0≤Tn≤1

{
lim sup

n
α(Tn) | − lim inf

n

1
√

n

(
log βn(Tn)+n D(ρ||σ)

)
≥ t2

}
= Φ(t2/

√
V (ρ‖σ)).
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Second-order asymptotics in Stein’s lemma

Main result 1: Second-order asymptotics in the non-i.i.d. scenario

For a given strictly increasing sequence of weights wn, under some conditions
(see later), the quantum information variance rate

v({ρn}, {σn}) = lim
n→∞

1

wn
V (ρn‖σn)

is well-defined, and:

Theorem (DPR16)

Fix ε ∈ (0, 1). Define

t∗2 (ε) =
√

v({ρn}, {σn}) Φ−1(ε).

Then

Optimality: ∀ t2 > t∗2 (ε) there exists a function ft2 (x) =
+∞

o(
√
x) such that ∀n ∈ N and any

sequence of tests Tn:

− log β(Tn) ≤ D(ρn||σn) +
√
wn t2 + ft2 (wn), (1)

Achievability: ∀ t2 < t∗2 (ε), ∀f (x) =
+∞

o(
√
x), there exists a sequence of test Tn such that

for n large enough:

− log βn(Tn) ≥ D(ρn||σn) +
√
wn t2 + f (wn). (2)

The i.i.d. case of Tomamichel&Hayashi13 and Li14 follows (Bryc ← CLT). The
Berry-Esseen theorem even provides information on third order:

− log βn(ε) = nD(ρ‖σ) +
√

nV (ρ‖σ)Φ−1(ε) +O(log n),
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Second-order asymptotics in Stein’s lemma

Key tools 1: the relative modular operator

The relative modular operator is a generalisation of the Radon-Nikodym
derivative for general von Neuman algebras. In finite dimensions, for two faithful
states, it reduces to:

∆ρ|σ : B(H)→ B(H), A 7→ ρAσ−1.

∆ρ|σ is a positive operator, admits a spectral decomposition.

Quantities of relevance can be rewritten in terms of ∆ρ|σ :

D(ρ‖σ) = 〈ρ1/2, log(∆ρ|σ)(ρ1/2)〉, where 〈A,B〉 = Tr(A∗B).

Ψs(ρ|σ) := log Tr(ρ1+sσ−s) = log〈ρ1/2,∆s
ρ|σ(ρ1/2)〉

Define X to be the classical random variable taking values on spec(log ∆ρ|σ)
such that for any measurable f : spec(log ∆ρ|σ)→ R,

〈ρ1/2, f (log ∆ρ|σ)(ρ1/2)〉 ≡ E[f (X )].

f : x 7→ x ⇒ E[X ] = D(ρ‖σ),

f : x 7→ esx ⇒ log E[esX ] = log〈ρ1/2, es log ∆ρ|σ (ρ1/2)〉 ≡ Ψs(ρ|σ), the
cumulant-generating function.
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Second-order asymptotics in Stein’s lemma

Key tools 2: Bryc’s theorem

The following theorem is a non i.i.d. generalization of the Central limit theorem:

Theorem (Bryc’s theorem Bryc93)

Let (Xn)n∈N be a sequence of random variables, and (wn)n∈N an increasing sequence
of weights. If there exists r > 0 such that:

∀n ∈ N, Hn(z) := log E
[

ezXn
]

is analytic in the complex open ball BC(0, r),

H(x) = limn→∞
1
wn

Hn(x) exists ∀x ∈ (−r , r),

supn∈N supz∈BC(0,r)
1
wn
|Hn(z)| < +∞,

then H is analytic on BC(0, r) and

Xn − H′n(0)
√
wn

d−→n→∞ N
(
0,H′′(0)

)
,
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Second-order asymptotics in Stein’s lemma

The working condition

Take Xn associated to log ∆ρn|σn , ρ
1/2
n ⇒ Hn(z) = Ψz (ρn|σn).

The conditions of Bryc’s theorem translate into:

Condition

Let {wn} an increasing sequence of weights. Assume there exists r > 0 such that

∀n ∈ N, z → Ψz (ρn|σn) is analytic in the complex open ball BC(0, r),

H(x) = limn→∞
1
wn

Ψz (ρn|σn) exists ∀x ∈ (−r , r),

supn∈N supz∈BC(0,r)
1
wn
|Ψz (ρn|σn)| < +∞,

Here H′n(0) = D(ρn‖σn),

By Bryc’s theorem, the quantum information variance rate

v({ρn}, {σn}) = lim
n→∞

1

wn
V (ρn‖σn) ≡ H′′(0)

is well-defined.
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Second-order asymptotics in Stein’s lemma

Proof of achievability (2)

We will need the following crucial technical lemma:

Lemma (Li14, DPR16)

Let ρ, σ ∈ D+(H). For all L > 0 there exists a test T such that

Tr(ρ(1− T )) ≤ 〈ρ1/2,P(0,L)(∆ρ|σ)(ρ1/2)〉 and Tr(σT ) ≤ L−1. (3)

Let Ln := exp(D(ρn‖σn) +
√
wnt2 + f (wn)), f (x) = ◦(

√
x).

(3) ⇒ − log β(Tn) ≥ D(ρn||σn) +
√
wn t2 + f (wn)

α(Tn) ≤
〈
ρn

1/2,P(0,Ln)(∆ρn|σn ) ρn
1/2
〉
,

=
〈
ρn

1/2,P(−∞,log Ln)(log ∆ρn|σn ) ρn
1/2
〉
.

= P(Xn ≤ log Ln) = P
(
Xn − D(ρn||σn)

√
wn

≤ t2 +
f (wn)
√
wn

)
.

Bryc’s theorem ⇒ RHS converges to Φ(t2/
√

v({ρn}, {σn})) < ε ⇒ for n large
enough,

α(Tn) ≤ ε.

Optimality (1) follows similarly from a lower bound on the total error provided by
Jaksic&Ogata&Pillet&Seiringer12.
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Some examples

Quantum spin systems

Lattice Zd .

System prepared at each site:
∀x ,Hx = H.

Example: particle (spin ± 1
2

):

Hx = C2.
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Some examples

∀X ⊂ Zd ,HX := ⊗x∈XHx ,

Interaction between sites:
Φ : X 7→ ΦX ∈ Bsa(HX ).

Φ Translation invariant: invariant on
sets of same shape.

Φ Finite range:
∃R > 0 : diam(X ) > R ⇒ ΦX = 0.

Φ induces dynamics, with equilibrium
states (Gibbs states):

HΦ
X :=

∑
Y⊂X

ΦY

ρΦ,β
X :=

e−βH
Φ
X

Tr(e−βH
Φ
X )
.
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Some examples

Λn := {−n, ..., n}d .

Translation invariant, of finite range
interactions Φ, Ψ.

Suppose given one of two states

ρn := ρΦ,β1
Λn

or σn := ρΨ,β2
Λn

Tests performed on HΛn

Proposition (DPR16)

For β1, β2 small enough, ρn and σn satisfy the conditions for second order asymptotics
w.r.t. wn = |Λn|.
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Some examples

Free lattice fermions

One-particle Hilbert space h := l2(Zd ), standard basis {ei : i ∈ Zd} (particle
localized at site i).

Construct the Fock space F(h) =
⊕

n∈N
∧n h, where

x1 ∧ ... ∧ xn =
1
√
n!

∑
σ∈Sn

sgn(σ)xσ(1) ⊗ ...⊗ xσ(n).

Algebra of observables: C∗ algebra generated by creation and anihilation
operators on the Fock space, obeying the canonical anti-commutation relations:

a(x)a(y) + a(y)a(x) = 0, a(x)a∗(y) + a∗(y)a(x) = 〈x , y〉1, x , y ∈ h.

a∗(y): unique linear extension a∗(y) : F(h)→ F(h) of

a∗(y)x1 ∧ ... ∧ xn = y ∧ x1 ∧ ... ∧ xn, a(y) = (a∗(y))∗
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Some examples

Let H ∈ B(h) be a one-particle Hamiltonian, define Ĥ := dΓ(H) the differential
second quantization on F(h), closure of

Hn(x1 ∧ ... ∧ xn) = P−

(
n∑

k=1

x1 ⊗ ...⊗ Hxk ⊗ ...⊗ xn

)
,

where P− is the projection onto the antisymmetric subspace.

Define the Gibbs state:

ρHβ =
e−βĤ

Tr
(

e−βĤ
)

Gibbs states are expressed as linear forms on CAR(h) as follows:

Tr(ρHβ a
∗(x1)...a∗(xn)a(ym)...a(y1)) = δmn det(〈yi ,Qxi 〉)i,j , Q :=

e−βH

1 + e−βH
.

ρHβ is called the quasi-free state with symbol Q.

Define the shift operators Tj : ei → ei+j , i , j ∈ Zd . A symbol which commutes
with all shift operators is said to be shift invariant.
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Some examples

Assume now that we only have access to part of the lattice: denote

Λn := {0, ..., n − 1}d ⊂ Zd , hn = l2(Λn) ⊂ h.

Assume given two shift invariant symbols δ < Q,R < 1− δ.

Denote Qn = PnQPn, Rn = PnRPn, where Pn orthogonal projection onto hn.

The sequences of states that we want to distinguish between are then:

{ρn} associated with symbols {Qn} vs. {σn} associated with symbols {Rn}.

Dierckx&Fannes&Pogorzelska08: ρn, σn can be written as:

ρn = det(1− Qn)

dim hn⊕
k=0

k∧ Qn

1− Qn
σn = det(1− Rn)

dim hn⊕
k=0

k∧ Rn

1− Rn
.

Proposition (DPR16)

ρn, and σn satisfy the conditions for second order asymptotics w.r.t. wn = |Λn|.
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1 Motivation: the quantum Stein lemma and its refinements

2 Second-order asymptotics in Stein’s lemma

3 Some examples

4 Finite sample size quantum hypothesis testing: the i.i.d. case

21 / 31



Finite sample size quantum hypothesis testing: the i.i.d. case

Finite sample size bounds of Audenaert&Mosonyi&Verstraete12

Practical situations: finitely many copies available.

Theorem (Audenaert&Mosonyi&Verstraete12)

For ρn := ρ⊗n and σn := σ⊗n,

−D(ρ‖σ)−
f (ε)
√
n
≤

1

n
log βn(ε) ≤ −D(ρ‖σ) +

g(ε)
√
n
,

where
f (ε) = 4

√
2 log η log(1− ε)−1, g(ε) = 4

√
2 log η log ε−1,

and η := 1 + e1/2D3/2(ρ‖σ) + e−1/2D1/2(ρ‖σ).

The ‘second order’ parts of the bounds scale as log ε−1, to compare with Φ−1(ε)
in the asymptotic case ⇒ not tight.

A better upper bound can be found by means of (non-commutative) martingale
concentration inequalities.
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Finite sample size quantum hypothesis testing: the i.i.d. case

Non-commutative martingales

A noncommutative probability space is a couple (M, τ), where M is a von
Neumann algebra, and τ a normal tracial state on M. Let N be a von Neumann
subalgebra of M. Then there exists a unique map E[.|N ] :M→N , called
conditional expectation, such that

E[1|N ] = 1,

E[AXB|N ] = AE[X |N ]B, A,B ∈ N , X ∈M,

E∗[τ |N ] = τ,

A noncommutative filtration of M is an increasing sequence {Mj}1≤j≤n of von
Neumann subalgebras of M.

A martingale is a sequence of noncommutative random variables
{Xj}1≤j≤n ∈Mn such that for each j ,

Xj ∈Mj ,

τ(|Xj |) <∞ (integrability),

E[Xj+1|Mj ] = Xj (martingale property).
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Finite sample size quantum hypothesis testing: the i.i.d. case

A noncommutative martingale concentration inequality

Theorem (Noncommutative Azuma inequality, Sadeghi&Moslehian14)

Let {Xj ,Mj}1≤j≤n be a self-adjoint martingale. If −dj ≤ Xj+1 − Xj ≤ dj (dj > 0),

τ(1[α,∞)(Xn)) ≤ exp

(
−α2

2
∑n

j=1 d
2
j

)
, α > 0.

Idea (borrowed from Sason11):
Take ρn = ρ̃1 ⊗ ...⊗ ρ̃n, and σn = σ̃1 ⊗ ...⊗ σ̃n. Then

∆ρn|σn =
n⊗

j=1

∆ρ̃j |σ̃j ⇒ log ∆ρn|σn =

n−1∑
j=0

id⊗j ⊗ log ∆ρ̃j |σ̃j ⊗ id⊗n−j−1

Define algebras Mk generated by idi ⊗ log ∆ρi |σi ⊗ idn−i−1, i ≤ k.

〈ρ1/2
n , (.) ρ1/2

n 〉 is a tracial state on Mn, and (log ∆ρk |σk − D(ρk‖σk ),Mk ) is a

martingale, where E[.|Mk ] := 〈ρ̃k+1 ⊗ ...⊗ ρ̃n, (.)ρ̃k+1 ⊗ ...⊗ ρ̃n〉.
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Finite sample size quantum hypothesis testing: the i.i.d. case

{log ∆ρk |σk − D(ρk‖σk )}1≤k≤n is a self-adjoint martingale, hence by NC Azuma:

〈ρ1/2
n , 1(r,∞)(log(∆ρn|σn )− D(ρn|σn))(ρ

1/2
n )〉 ≤ e

− r2

2
∑

j d
2
j .

Recall: ∀n, Ln, ∃Tn:

α(Tn) ≤ 〈ρ1/2
n ,P(0,Ln)(∆ρn|σn )(ρ

1/2
n )〉 and β(Tn) ≤ L−1

n .

Hence,

α(Tn) ≤ 〈ρ1/2
n ,P(−∞,log Ln)(log ∆ρn|σn )(ρ

1/2
n )〉 ≤ e

− (log Ln−D(ρn‖σn))2

2
∑

j d
2
j ≡ ε

⇒ log Ln ≡
√

2
∑
j

d2
j ln ε−1 + D(ρn‖σn)

⇒ βn(ε) ≤ β(Tn) ≤ e
−D(ρn‖σn)−

√
2
∑

j d
2
j log ε−1

.
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Finite sample size quantum hypothesis testing: the i.i.d. case

Remember Audenaert&Mosonyi&Verstraete12 bound:

log βn(ε) ≤ −nD(ρ‖σ) +
√
ng(ε), g(ε) := Kρ,σ log ε−1.

Theorem (DR16)

Suppose given states of the form

ρn =
n⊗

j=1

ρ̃j and σn =
n⊗

j=1

σ̃j ,

where for each j, ρ̃j , σ̃j ∈ D(Hj )+. Then for each n ∈ N:

log βn(ε) ≤ −
n∑

j=1

D(ρ̃j‖σ̃j ) +

√√√√2 log ε−1

n∑
k=1

d2
k , dk := ‖ log ∆ρ̃k |σ̃k − D(ρ̃k‖σ̃k )‖∞.

In the i.i.d. case (ρn = ρ⊗n vs. σn = σ⊗n),

log βn(ε) ≤ −nD(ρ‖σ) +
√
nh̃(ε), h̃(ε) :=

√
2 log ε−1d1.
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Finite sample size quantum hypothesis testing: the i.i.d. case

Comparison with Audenaert&Mosonyi&Verstraete12

Our error scales as: ∼
√

log ε−1, as opposed to ∼ log ε−1.

We are getting closer to the asymptotic behavior in ∼ Φ−1(ε).

0.2 0.4 0.6 0.8 1.0
ϵ

-2

-1

1

2

Rates

g(ϵ)

h
˜
(ϵ)

s1(ϵ)

-f(ϵ)
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Conclusion

Summary and open questions

We studied second order asymptotics as well as finite sample size hypothesis
testing in the asymmetric scenario.

We proved a theorem providing second order asymptotics for a large class of
quantum systems, including the i.i.d. scenario of Tomamichel&Hayashi13 and
Li14, as well as states of quantum spin systems and free fermions on a lattice.

We found finite sample size bounds on the optimal type II error in the i.i.d.
scenario using noncommutative martingale concentration inequalities.

Open question: Does the martingale approach give bounds in physically relevant
non i.i.d. examples?

28 / 31



Conclusion

Thank you for your attention!
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