Quantum statistics:

Estimation of large dimensional systems

Mădălin Guță

School of Mathematical Sciences
University of Nottingham

C. Butucea, M.G., T. Kypraios, New Journal of Physics, 17, 113050 (2015)
A. Acharya, T. Kypraios, M.G., New Journal of Physics (2016)
A. Acharya, M.G: 1609.03758

Quantum trajectories, parameter and state estimation

Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Quantum-classical interface is stochastic \Rightarrow Q. Engineering needs Statistics

■ Problem: Quantum state estimation

- Goal: create a specific state of e.g. 8 ions
- Validation: statistical estimation from measurement outcomes

[Häffner et al, Nature 2005]
$\triangleright 4^{8}-1=65535$ parameters
$\triangleright 3^{8} \times 100=656100$ measurements
$\triangleright 10$ hours measurement time

Rainer Blatt's Lab, Innsbruck

Simple measurements

- Measurement setting given by an orthonormal basis $\mathbf{s}:=\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{d}\right\rangle\right\}$ in \mathbb{C}^{d}
- Outcome of measurement is a random index of a basis element $O \in\{1, \ldots, d\}$
- Probability distribution: if system is prepared state ρ

$$
\mathbb{P}[O=i]=\left\langle e_{i}\right| \rho\left|e_{i}\right\rangle=\rho_{i i}
$$

- Quantum state tomography: probe system with sufficient measurements to estimate ρ

Example: spin / two-level ion / qubit tomography

- Any state on \mathbb{C}^{2} is parametrized by a 3-D Bloch vector $\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)$ with $\|\mathbf{r}\| \leq 1$

$$
\rho_{\mathbf{r}}=\frac{1}{2}\left(\begin{array}{cc}
1+r_{z} & r_{x}-i r_{y} \\
r_{x}+i r_{y} & 1-r_{z}
\end{array}\right)
$$

Example: spin / two-level ion / qubit tomography

- Any state on \mathbb{C}^{2} is parametrized by a 3-D Bloch vector $\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)$ with $\|\mathbf{r}\| \leq 1$

$$
\rho_{\mathbf{r}}=\frac{1}{2}\left(\begin{array}{cc}
1+r_{z} & r_{x}-i r_{y} \\
r_{x}+i r_{y} & 1-r_{z}
\end{array}\right)
$$

- 3 standard measurement bases corresponding to $s=x, y, z$ spin observables

$$
\underbrace{\left|e_{x}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm 1}}_{s=x} \quad \underbrace{\left|e_{y}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm i}}_{s=y} \quad \underbrace{\left|e_{z}^{+}\right\rangle=\binom{1}{0},\left|e_{z}^{-}\right\rangle=\binom{0}{1}}_{s=z}
$$

- Probability distributions: $\mathbb{P}(o= \pm \mid s)=\frac{1 \pm r_{s}}{2}, \quad s=x, y, z$
- n measurement repetitions \longrightarrow counts $\{N(\pm \mid x), N(\pm \mid y), N(\pm \mid z)\} \longrightarrow$ (LS) estimator

$$
\widehat{\rho}_{n}:=\rho_{\hat{\mathbf{r}}}, \quad \widehat{r}_{x, y, z}:=\frac{N(+\mid x, y, z)-N(-\mid x, y, z)}{n}
$$

Boundary/positivity problem: for pure (rank one) states, estimator may not be physical (positive)

Measuring (correlated) states of multiple ions

■ State space of k two-level systems scales exponentially with k !

$$
\mathcal{H}_{k}:=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2} \cong \mathbb{C}^{2^{k}}=\mathbb{C}^{d}
$$

- Joint state of k ions
- General density matrix ρ has $4^{k}-1=d^{2}-1$ parameters (e.g. $4^{8}-1=65535$)
- Density matrix of rank r has $r(2 \cdot d-r)-1$ param. (e.g. $2^{8}-2=254$ for a pure state)

Measuring (correlated) states of multiple ions

■ State space of k two-level systems scales exponentially with k !

$$
\mathcal{H}_{k}:=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2} \cong \mathbb{C}^{2^{k}}=\mathbb{C}^{d}
$$

- Joint state of k ions
- General density matrix ρ has $4^{k}-1=d^{2}-1$ parameters (e.g. $4^{8}-1=65535$)
- Density matrix of rank r has $r(2 \cdot d-r)-1$ param. (e.g. $2^{8}-2=254$ for a pure state)
- Simultaneous, separate measurements on each ion:
- 3^{k} settings $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right) \in\{x, y, z\}^{k} \longrightarrow$ product basis $\left|e_{s_{1}}^{o_{1}} \otimes \cdots \otimes e_{s_{k}}^{o_{k}}\right\rangle$
- 2^{k} outcomes $\mathbf{o}=\left(o_{1}, \ldots, o_{k}\right) \in\{+,-\}^{k}$
- probabilities

$$
\mathbb{P}_{\rho}(\mathbf{o} \mid \mathbf{s})=\left\langle e_{s_{1}}^{o_{1}} \otimes \cdots \otimes e_{s_{k}}^{o_{k}}\right| \rho\left|e_{s_{1}}^{o_{1}} \otimes \cdots \otimes e_{s_{k}}^{o_{k}}\right\rangle
$$

Measurement procedure and statistical model ${ }^{1}$

1. For each ion choose a spin direction to measure basis $s \in\{x, y, z\}$
2. measure each ion and obtain outcome $\mathbf{o}:=\left(o_{1}, \ldots, o_{k}\right) \in\{1,-1\}^{k}$
3. Repeat n times and collect counts of outcomes $\left\{N_{\mathbf{O}, \mathbf{s}}: \mathbf{o} \in\{1,-1\}^{k}\right\}$

$$
\mathbb{P}_{\rho}\left(\left\{N(\mathbf{o} \mid \mathbf{s}): \mathbf{o} \in\{1,-1\}^{k}\right\}\right)=\frac{n!}{\prod_{o} N(\mathbf{o} \mid \mathbf{s})!} \prod_{\mathbf{o}} \mathbb{P}_{\rho}(\mathbf{o} \mid \mathbf{s})^{N(\mathbf{o} \mid \mathbf{s})}
$$

4. Repeat over all 3^{k} choices of measurement set-ups

Total set of $3^{k} \times 2^{k} \gg 4^{k}$ projections is highly overcomplete in $M\left(\mathbb{C}^{2}\right)$!
$1_{\text {statistical model based on counts is different from that of compressed sensing D. Gross et al, Phys. Rev. Lett. } 2010}$

Measurement data

- 3^{k} columns of length 2^{k}
- one column for each measurement setting
- each column contains the counts totalling $n=100$, of the $2^{\mathrm{k}}=16$ possible outcomes
- frequencies of outcomes are bad estimates of probabilities, but overall info is high

| 1 | 2 | 11 | 11 | 11 | 21 | 5 | 16 | 21 | 19 | 11 | 16 | 2 | 26 | 15 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 19 | 10 | 6 | 15 | 4 | 22 | 10 | 3 | 12 | 8 | 16 | 18 | 5 | 14 | 16 |
| 3 | 30 | 12 | 15 | 9 | 10 | 18 | 14 | 3 | 6 | 11 | 4 | 4 | 2 | 1 | 5 |
| 4 | 0 | 4 | 15 | 10 | 17 | 2 | 4 | 14 | 13 | 0 | 4 | 8 | 5 | 1 | 3 |
| 5 | 21 | 13 | 12 | 7 | 6 | 5 | 14 | 12 | 8 | 12 | 7 | 19 | 3 | 8 | 3 |
| 6 | 1 | 12 | 14 | 0 | 1 | 1 | 0 | 6 | 6 | 12 | 8 | 2 | 6 | 2 | 7 |
| 7 | 1 | 2 | 0 | 19 | 7 | 12 | 14 | 6 | 7 | 14 | 7 | 9 | 23 | 15 | 34 |
| 8 | 0 | 1 | 1 | 0 | 4 | 8 | 0 | 6 | 6 | 0 | 7 | 12 | 4 | 15 | 5 |
| 9 | 21 | 17 | 8 | 10 | 7 | 7 | 14 | 9 | 8 | 15 | 6 | 9 | 6 | 3 | 0 |
| 10 | 2 | 16 | 15 | 0 | 12 | 9 | 0 | 3 | 4 | 1 | 7 | 3 | 0 | 4 | 6 |
| 11 | 0 | 0 | 1 | 17 | 9 | 2 | 14 | 12 | 7 | 0 | 1 | 0 | 5 | 5 | 2 |
| 12 | 1 | 1 | 1 | 0 | 2 | 8 | 0 | 4 | 3 | 0 | 1 | 0 | 0 | 3 | 1 |
| 13 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 14 | 9 | 7 | 6 | 2 | 4 |
| 14 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | 6 | 0 | 2 | 2 |
| 15 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 9 | 6 | 3 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 4 |

Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Linear regression and least squares

Problem: linear regression
estimate the unknown vector $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ given observations

$$
Y_{i}=\sum_{j} A_{i j} x_{j}+\epsilon_{i}
$$

with known $A_{i j}$ and i.i.d $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.

Linear regression and least squares

Problem: linear regression
estimate the unknown vector $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ given observations

$$
Y_{i}=\sum_{j} A_{i j} x_{j}+\epsilon_{i}
$$

with known $A_{i j}$ and i.i.d $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.
Least squares: Find \hat{x} which minimises

$$
\sum_{i}\left|Y_{i}-\sum_{j} A_{i j} \hat{x}_{j}\right|^{2}=(\mathbf{Y}-A \hat{\mathbf{X}})^{T}(\mathbf{Y}-A \hat{\mathbf{X}})
$$

Linear regression and least squares

Problem: linear regression
estimate the unknown vector $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ given observations

$$
Y_{i}=\sum_{j} A_{i j} x_{j}+\epsilon_{i}
$$

with known $A_{i j}$ and i.i.d $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.
Least squares: Find \hat{x} which minimises

$$
\sum_{i}\left|Y_{i}-\sum_{j} A_{i j} \hat{x}_{j}\right|^{2}=(\mathbf{Y}-A \hat{\mathbf{X}})^{T}(\mathbf{Y}-A \hat{\mathbf{X}})
$$

Explicit solution coinciding with maximum likelihood estimator

$$
\hat{\mathbf{X}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{Y}
$$

Covariance matrix of \hat{X}

$$
\operatorname{Var}(\hat{\mathbf{X}})=\sigma^{2}\left(A^{T} A\right)^{-1}
$$

The least squares estimator

- For large n frequencies are close to the probabilities of the corresponding outcome

$$
\begin{aligned}
f_{n}(\mathbf{o} \mid \mathbf{s}) & =\frac{N(\mathbf{o} \mid \mathbf{s})}{n}=p_{\rho}(\mathbf{o} \mid \mathbf{s})+\epsilon_{n}(\mathbf{o} \mid \mathbf{s}) \quad \text { ("multinomial error") } \\
\mathbf{f}_{n} & =\mathbf{p}_{\rho}+\epsilon_{n}=\mathbf{A} \tilde{\rho}+\epsilon_{n}
\end{aligned}
$$

- State estimation as a "linear regression" problem: least squares estimator

$$
\hat{\rho}_{n}^{(l s)}=\arg \min _{\tau}\left\|\mathbf{A} \tilde{\tau}-\mathbf{f}_{n}\right\|_{2}^{2}=\left(\mathbf{A}^{t} \mathbf{A}\right)^{-1} \cdot \mathbf{A}^{t} \cdot \mathbf{f}_{n}
$$

- Disadvantages
- Least squares estimator is not a density matrix (not positive and trace one)
- Least squares estimator is too "noisy" for low rank states
- Least squares estimator minimises prediction rather than estimation error $\mathbb{E}\left\|\widehat{\rho}_{n}-\rho\right\|_{2}^{2}$

Eigenvalues distribution for the least squares estimator

- Eigenvalues decomposition for true state and least squares estimator

$$
\rho=\sum_{i=1}^{r} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad \hat{\rho}_{n}^{(l s)}=\sum_{i=1}^{d} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right|
$$

- If $r \ll d=2^{k}$, the $M S E=\mathbb{E}\left\|\hat{\rho}_{n}^{(l s)}-\rho\right\|_{2}^{2}$ is large due to variance contributions from many eigenvalues $\widehat{\lambda}_{i}$ which estimate zero eigenvalues of ρ

LS

LS

Eigenvalues of true state of rank 2 (blue) versus least squares estimator (red)
LEFT: $n=20$ repetitions RIGHT: $n=100$ repetitions

Norm-error upper bound for the least squares estimator ${ }^{2}$

- operator-norm distance $\|\rho-\tau\|=\left|\lambda_{\max }(\Delta)\right|, \quad \Delta:=\rho-\tau$
- norm-two distance

$$
\begin{equation*}
\|\rho-\tau\|_{2}^{2}=\sum_{i}\left|\lambda_{i}(\Delta)\right|^{2} \leq d \cdot\|\rho-\tau\|^{2} \tag{}
\end{equation*}
$$

Theorem

For any $\varepsilon>0$ small enough the following inequality holds with probability larger than $1-\varepsilon$

$$
\left\|\hat{\rho}_{n}^{(l s)}-\rho\right\| \leq \nu_{n}(\varepsilon)
$$

where the rate $\nu_{n}(\varepsilon)^{2}$ is

$$
\nu_{n}(\varepsilon)^{2}=\frac{2}{n} \log \left(\frac{2 d}{\varepsilon}\right)=2 \frac{3^{k}}{N} \log \left(\frac{2 d}{\varepsilon}\right)
$$

with $N:=n \cdot 3^{k}$ the total number of measurements.

- Concentration inequality and (*) give upper bound for the MSE

$$
\mathbb{E}\left\|\hat{\rho}_{n}^{(l s)}-\rho\right\|_{2}^{2} \leq C \frac{6^{k} \cdot k}{N} \approx k \cdot\left(\frac{3}{2}\right)^{k} \cdot \frac{\text { \#parameters }}{\text { \#samples }}
$$

[^0]
Idea of the proof

- Write

$$
\hat{\rho}_{n}^{(l s)}-\rho=\sum_{\mathbf{s}} \sum_{i} W_{\mathbf{s}, i}
$$

where $W_{\mathbf{s}, i}$ are i.i.d. centred random matrices

■ Use matrix Bernstein inequality ${ }^{3}$ for i.i.d. Hermitian matrices

$$
\mathbb{P}\left(\left\|Y_{1}+\ldots+Y_{n}\right\| \geq t\right) \leq 2 d \exp \left(-\frac{t^{2} / 2}{W+t V / 3}\right)
$$

where $\left\|Y_{j}\right\| \leq V$ and $\left\|\sum_{j} \mathbb{E}\left(Y_{j}^{2}\right)\right\| \leq W$

[^1]
Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Penalising small eigenvalues

- Assume true state ρ of low rank: $\rho=\sum_{i=1}^{r} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ with $r \ll d$
- Idea: $\left\|\widehat{\rho}_{n}^{(l s)}-\rho\right\| \approx \nu_{n} \Rightarrow$ eigenvalues of $\widehat{\rho}_{n}^{(l s)}$ s.t. $\left|\widehat{\lambda}_{i}\right| \leq \nu_{n}$ may be "statistical noise"
- Truncated versions of the LS estimator: order $\left|\widehat{\lambda}_{i}\right| \geq \cdots \geq\left|\widehat{\lambda}_{d}\right|$ and for each $k \leq d$

$$
\widehat{\rho}_{n}^{(l s)}=\sum_{i=1}^{d} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right| \longrightarrow \widehat{\rho}_{n}(k)=\sum_{i=1}^{k} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right|
$$

Norm-two error $E(k):=\left\|\widehat{\rho_{n}}(k)-\rho\right\|_{2}^{2}$ for a state of rank $r=6$, as function of truncation rank k

Penalised least squares estimator

- Choose rank $\widehat{k}:=\max \left\{k: \widehat{\lambda}_{k}^{2} \geq \nu_{n}^{2}\right\}$ with $\left|\widehat{\lambda}_{1}\right| \geq\left|\widehat{\lambda}_{2}\right| \geq \cdots \geq\left|\widehat{\lambda}_{d}\right|$
- Equivalently, \widehat{k} minimises the rank-penalised distance to the least squares

$$
\widehat{k}=\arg \min _{k}\left[\left\|\widehat{\rho}_{n}(k)-\widehat{\rho}_{n}\right\|_{2}^{2}+k \cdot \nu_{n}^{2}\right]
$$

- Penalised estimator: $\widehat{\rho}_{n}^{(p e n)}:=\widehat{\rho}_{n}(\widehat{k})$

Eigenvalues of true state ρ (blue) versus: LS (red) on LEFT and penalised estimator (red) RIGHT for a rank 6 state with $n=100$ repetitions

MSE upper bound for the penalised estimator ${ }^{4}$

■ Penalised estimator: with $\widehat{k}:=\max \left\{k: \widehat{\lambda}_{k}^{2} \geq \nu_{n}^{2}\right\}$

$$
\widehat{\rho}_{n}^{(l s)}=\sum_{i=1}^{d} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right| \longrightarrow \widehat{\rho}_{n}^{(p e n)}=\sum_{i=1}^{\widehat{k}} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right|
$$

Theorem

Let ρ be a state of unknown rank r.
Let $\varepsilon>0$ be a small parameter. Then with probability larger than $1-\varepsilon$, we have

$$
\left\|\widehat{\rho}_{n}^{(p e n)}-\rho\right\|_{2}^{2} \leq C \cdot r \cdot \nu_{n}(\epsilon)^{2}=C\left(\frac{3}{2}\right)^{k} \log \left(\frac{d}{\varepsilon}\right) \frac{d r}{N}
$$

- Concentration inequality gives upper bound for the MSE

$$
\mathbb{E}\left\|\hat{\rho}_{n}^{(\text {pen })}-\rho\right\|_{2}^{2} \leq C k \cdot\left(\frac{3}{2}\right)^{k} \cdot \frac{\text { \#parameters }(\mathrm{rank}=\mathrm{r})}{\text { \#samples }}
$$

[^2]
Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Physical estimator

- Disadvantage of penalised estimator: $\hat{\rho}_{n}^{(p e n)}$ may not be a state (positive, trace-one matrix)
- Physical estimator $\widehat{\rho}_{n}^{(p h y s)}$ exploits the positivity properties of ρ :

$$
\widehat{\rho}_{n}^{(p h y s)}=\underset{\sigma \in \mathcal{S}\left(\nu_{n}\right)}{\arg \min }\left\|\sigma-\widetilde{\rho}_{n}^{(l s)}\right\|_{2}^{2},
$$

- $\widetilde{\rho}_{n}^{(l s)}$ is the "normalised LS estimator" s.t. $\operatorname{Tr} \widetilde{\rho}_{n}^{(l s)}=1$
- Set of states at noise level ν_{n}

$$
\mathcal{S}\left(\nu_{n}\right)=\left\{\sigma: \text { state with eigenvalues } \lambda_{j} \in\{0\} \cup\left(4 \nu_{n}, 1\right], j=1, \ldots, d\right\} .
$$

Questions: can it be computed efficiently, and what is its MSE?

Physical estimator: implementation

- Optimisation: solution is a truncated LS matrix $\widehat{\rho}_{n}(\widehat{k})=\sum_{i=1}^{\widehat{k}} \widehat{\lambda}_{i}\left|\hat{\psi}_{i}\right\rangle\left\langle\hat{\psi}_{i}\right|$
- Truncation rank: simple iterative algorithm on eigenvalues arranged as $\widehat{\lambda}_{1} \geq \cdots \geq \widehat{\lambda}_{d}$ selects maximum k for which all eigenvalues of $\widehat{\rho}_{n}(\widehat{k})$ are larger than threshold after being normalised by shifting with constant

Eigenvalues of true state ρ (blue circles) versus LS (red triangles) on LEFT vs. eigenvalues of physical estimator (rose) on RIGHT for a rank 2 state with $n=20$ repetitions

Physical estimator: upper bound ${ }^{5}$

Theorem

Let ρ be a state of unknown rank r.
Let $\varepsilon>0$ be a small parameter, and assume that $\lambda_{r}>8 \nu_{n}(\varepsilon)$. Then, with probability larger than $1-\varepsilon$ we have

$$
\left\|\hat{\rho}_{n}^{(p h y s)}-\rho\right\|_{2}^{2} \leq C\left(\frac{3}{2}\right)^{k} \log \left(\frac{d}{\varepsilon}\right) \frac{d r}{N}
$$

- Concentration inequality gives upper bound for the MSE

$$
\mathbb{E}\left\|\hat{\rho}_{n}^{(\text {phys })}-\rho\right\|_{2}^{2} \leq C k \cdot\left(\frac{3}{2}\right)^{k} \cdot \frac{\text { \#parameters }(\mathrm{rank}=r)}{\# \text { samples }}
$$

[^3]
Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Choosing truncation rank by cross-validation

- Norm-two error $\mathrm{E}(\mathrm{k}):=\left\|\widehat{\rho}_{n}(k)-\rho\right\|_{2}^{2}$ minimised by oracle estimator
- Cross-validation:
- Split dataset in 5 independent batches and compute $\widehat{\rho}_{n ; j}^{(l s)}$ and $\widehat{\rho}_{n ;-j}^{(l s)}$ on batch j and respectively all-but- j batches, for $j=1, \ldots, 5$.
- Replace $E(k)$ by unbiased estimator (up to constant independent of k)

$$
C V(k)=\frac{1}{5} \sum_{i=1}^{5}\left\|\widehat{\rho}_{n ;-j}(k)-\widehat{\rho}_{n ; j}^{(l s)}\right\|_{2}^{2}
$$

- Cross-validation estimator: $\widehat{\rho}_{n}^{(c v)}:=\widehat{\rho}_{n}(\widehat{k})$ where \widehat{k} is the minimiser of $C V(k)$.

$\mathrm{E}(\mathrm{k})$ (black) and $\mathrm{CV}(\mathrm{k})$ (red) for one dataset from a rank 6 state with $n=500$ repetitions

Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Comparison of estimators: SEs for different states, with $n=100$

Boxplots of norm-two errors $\left\|\widehat{\rho_{n}}-\rho\right\|_{2}^{2}$ of different estimators for states of ranks $1,2,6,10$ with $n=100$ repetitions (computed from 100 datasets)

Comparison of estimators: Empirical distribution of chosen rank

Empirical distributions of the chosen rank for a state of rank $r=6$
Left: penalised estimator \& Right: physical estimator

Comparison of estimators: MSE for different states and repetitions n

Renormalised MSEs $=n \cdot \mathbb{E}\left\|\widehat{\rho}_{n}-\rho\right\|_{2}^{2}$ as a function of number of repetitions n for states with different ranks: 1 (black), 2 (red), 6 (green), 10 (blue).

Outline

■ Statistical model for multiple ions tomography

■ Least-squares estimator

- Spectral thresholding estimators
- Penalised estimator
- Physical estimator
- Cross-validation estimator
- Simulation results

■ Efficient estimation with reduced measurement settings

Can we estimate low rank states with reduced measurement settings ? ${ }^{6}$

- Counting parameters: rank r state $\longrightarrow r \cdot d$ parameters $\longrightarrow \approx r$ settings $\left(\ll 3^{k}\right)$
- Random measurement design:
choose m random settings $\mathcal{S}:=\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right\}$ and measure each setting $n=\frac{N}{m}$ times
- Mean square error of MLE is stable for a large range of number of settings m

Mean square error $\mathbb{E}\left\|\hat{\rho}^{(m l)}-\rho\right\|_{2}^{2}$ for 4 ions states of ranks $1-5$ and randomly chosen settings

[^4]
Concentration for Fisher information matrix ${ }^{7}$

- More randomness helps: consider measurements w.r.t. random bases (Haar measure)
- Asymptotics: for large n mean square error of ML estimator scales as in Cramér-Rao bound

$$
\left\|\hat{\rho}^{(m l)}-\rho\right\|_{2}^{2} \approx \frac{1}{N} \operatorname{Tr}\left(I(\rho \mid \mathcal{S})^{-1} G(\rho)\right)
$$

- Fisher information matrix (per setting) converges to average

$$
I(\rho \mid \mathcal{S})=\frac{1}{m} \sum_{i=1}^{m} I\left(\rho \mid \mathbf{s}_{i}\right) \longrightarrow \bar{I}(\rho)=\int I(\rho \mid \mathbf{s}) d \mathbf{s}
$$

Theorem (Fisher info \& MSE concentrate with $r \cdot \log r d$ settings)

Let ρ be rank r state with spectrum $(1 / r, \ldots, 1 / r, 0, \ldots, 0)$.
If $m=C(r+1) \log \left(2\left(2 r d-r^{2}-1\right) / \delta \epsilon^{2}\right)$ then the bounds hold with probability $1-\delta$

$$
\begin{aligned}
& (1-\epsilon) \bar{I}(\rho) \leq \quad I(\rho \mid \mathcal{S}) \quad \leq(1+\epsilon) \bar{I}(\rho) \\
& (1-\epsilon) \operatorname{Tr}\left[\bar{I}(\rho)^{-1} G(\rho)\right] \leq \operatorname{Tr}\left[I(\rho \mid \mathcal{S})^{-1} G(\rho)\right] \leq(1+\epsilon) \operatorname{Tr}\left[\bar{I}(\rho)^{-1} G(\rho)\right]
\end{aligned}
$$

[^5]
Eigenvalues and MSE concentration

Rank 1

Rank 3

Rank 2

Relative MSE

Proof

- Matrix Chernoff bound ${ }^{8}$

$$
(1-\epsilon) \bar{I}(\rho) \leq I(\rho \mid \mathcal{S}) \leq(1+\epsilon) \bar{I}(\rho)
$$

- Number of settings required (up to log factors)

$$
m \approx \frac{\lambda_{\max }}{\lambda_{\min }}:=\frac{\max _{\mathbf{s}} \lambda_{\max } I(\rho \mid \mathbf{s})}{\lambda_{\min }(\bar{I})}
$$

- \bar{I} can be computed explicitly $\longrightarrow \lambda_{\min }(\bar{I})=r /(r+1)$
- Quantum Cramér-Rao bound

$$
I(\rho \mid \mathbf{s}) \leq F(\rho) \quad \longrightarrow \quad \lambda_{\max } I(\rho \mid \mathbf{s}) \leq \lambda_{\max } F(\rho)=2 r
$$

[^6]
Log factors may not be necessary

Relative error w.r.t. asymptotic MSE for random settings, and pure states of 3-6 qubits.

Error upper bound for "compressive measurements"9

■ when $\lambda_{\text {min }}(\rho) \rightarrow 0$ the Fisher information matrix does not concentrate

- number of settings needed $m=\frac{C}{\lambda_{\min }(\rho)} \log \left(\frac{2\left(2 r d-r^{2}-1\right)}{\delta}\right)$

■ interested only in the behaviour of the asymptotic MSE $\operatorname{Tr}\left(I(\rho \mid \mathcal{S})^{-1} G(\rho)\right)$

Theorem (compressed sensing of rank r states)

Let ρ be a rank r state. If the number of settings is $m=C r \log \left(2\left(2 r d-r^{2}-1\right) / \delta\right)$, the asymptotic MSE satisfies

$$
\operatorname{Tr}\left(I(\rho \mid \mathcal{S})^{-1} G(\rho)\right) \leq C\left(2 r d-r^{2}-1\right)
$$

with probability $1-\delta$.

[^7]
Lower bound

Question: are the proposed estimators "optimal" ?

- Asymptotic minimax risk over states $\rho \in \mathcal{S}_{d, r}$ of rank r

$$
R_{\operatorname{minmax}}(r):=\liminf _{n \rightarrow \infty} \inf _{\widehat{\rho}_{n}} \sup _{\rho \in \mathcal{S}_{d, r}} N \cdot \mathbb{E}\left(\left\|\widehat{\rho}_{n}-\rho\right\|_{2}^{2}\right)
$$

Theorem

The following lower bound holds for the asymptotic minimax risk

$$
R_{\operatorname{minmax}}(r) \geq 2 r(d-r)
$$

- no estimation method can have rate faster than $\frac{\text { \#parameters }(\mathrm{rank}=r)}{\text { \#samples }}$
- ratio between penalised and physical upper bound and minimax lower bound: $k\left(\frac{3}{2}\right)^{k}$

Idea of the proof

- Minimax rate in terms of Fisher information

$$
R_{\operatorname{minmax}}(r)=3^{k} \sup _{\rho \in \mathcal{S}_{d, r}} \operatorname{Tr}\left(I^{-1}(\rho) G(\rho)\right)
$$

- Minimax risk is larger than Bayes risk with uniform prior over matrices with spectrum $(1 / r, \ldots, 1 / r, 0, \ldots 0)$

$$
R_{\operatorname{minmax}}(r) \geq R_{\pi}(r, k):=3^{k} \int \pi(d \rho) \operatorname{Tr}\left(G(\rho)^{1 / 2} I^{-1}(\rho) G(\rho)^{1 / 2}\right)
$$

- Since $t \mapsto t^{-1}$ is operator convex function

$$
\int \pi(d \rho) G^{1 / 2}(\rho) I^{-1}(\rho) G^{1 / 2}(\rho) \geq\left(\int \pi(d \rho) G^{-1 / 2}(\rho) I(\rho) G^{-1 / 2}(\rho)\right)^{-1}
$$

- Due to the rotation symmetry the integral can be computed explicitly using Weingarten formulas

Outlook

■ New class of estimators based on spectral truncation of the LS estimator

- Can LS be replaced by a better linear estimators as starting point ?
- Better understanding of the role of positivity (e.g. LS with positivity constraints)
- Confidence intervals / regions

■ MSE concentration for random measurements settings design

- Concentration for random Pauli bases
- Behaviour near boundary (very small non-zero eigenvalues)
- Choosing number of settings for states with unknown rank

[^0]: ${ }^{2}$ C. Butucea, M.G. and T. Kypraios, New Journal of Physics, 17, 113050 (2015)
 this improves on the $4^{k} / N$ factor in the upper bound of P. Alquier, C. Butucea, et al, Phys. Rev. A (2013)

[^1]: ${ }^{3}$ J. A. Tropp, Found Comput Math 12 389-434 (2012)

[^2]: ${ }^{4}$ C. Butucea, M.G. and T. Kypraios, New Journal of Physics, 17, 113050 (2015)

[^3]: ${ }^{5}$ C. Butucea, M.G. and T. Kypraios, ArXiv:1504.08295

[^4]: ${ }^{6}$ similar to "compressed sensing" D. Gross, et al, Phys. Rev. Lett. (2010) but uses "raw" rather than "coarse grained" data

[^5]: ${ }^{7}$ A. Acharya, T. Kypraios, M.G., New Journal of Physics (2016)

[^6]: ${ }^{8}$ Ahlswede R. and Winter A., IEEE Transactions Information Theory 48 569-579 (2002)

[^7]: ${ }^{9}$ A. Acharya, M.G., arxiv:1609.03758

