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Quantum-classical interface is stochastic ⇒ Q. Engineering needs Statistics

Problem: Quantum state estimation
I Goal: create a specific state of e.g. 8 ions
I Validation: statistical estimation from measurement outcomes

[Häffner et al, Nature 2005]

. 48 − 1 = 65 535 parameters

. 38 × 100 = 656 100 measurements

. 10 hours measurement time

. days of computer time Rainer Blatt’s Lab, Innsbruck

“quantum computer” with 8 qubits (ions)



Simple measurements

Measurement setting given by an orthonormal basis s := {|e1〉, . . . , |ed〉} in Cd

Outcome of measurement is a random index of a basis element O ∈ {1, . . . , d}

Probability distribution: if system is prepared state ρ

P[O = i] = 〈ei|ρ|ei〉 = ρii

Quantum state tomography: probe system with sufficient measurements to estimate ρ

S1 S2 S3 S4

O4O1 O2 O3

Measurement 
settings (bases)

Identically prepared  
systems in state ⇢

Random Meas. 
Outcome

⇢ ⇢ ⇢ ⇢

b⇢4(O1, O2, O3, O4)Estimator 



Example: spin / two-level ion / qubit tomography

Any state on C2 is parametrized by a 3-D Bloch vector r = (rx, ry , rz) with ‖r‖ ≤ 1

ρr = 1
2

(
1 + rz rx − iry
rx + iry 1− rz

) z

y

x

r

Thursday, 19 February 15

3 standard measurement bases corresponding to s = x, y, z spin observables

|e±
x 〉 =

1
√

2

(
1
±1

)
︸ ︷︷ ︸

s=x

|e±
y 〉 =

1
√

2

(
1
±i

)
︸ ︷︷ ︸

s=y

|e+
z 〉 =

(
1
0

)
, |e−

z 〉 =
(

0
1

)
︸ ︷︷ ︸

s=z

Probability distributions: P(o = ±|s) = 1±rs
2 , s = x, y, z

n measurement repetitions −→ counts {N(±|x), N(±|y), N(±|z)} −→ (LS) estimator

ρ̂n := ρr̂, r̂x,y,z :=
N(+|x, y, z)−N(−|x, y, z)

n

Boundary/positivity problem: for pure (rank one) states, estimator may not be physical (positive)
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Measuring (correlated) states of multiple ions

State space of k two-level systems scales exponentially with k !

Hk := C2 ⊗ · · · ⊗ C2 ∼= C2k
= Cd

Joint state of k ions

I General density matrix ρ has 4k − 1 = d2 − 1 parameters (e.g. 48 − 1 = 65535)
I Density matrix of rank r has r(2 ·d− r)−1 param. (e.g. 28−2 = 254 for a pure state)

Simultaneous, separate measurements on each ion:
I 3k settings s = (s1, . . . , sk) ∈ {x, y, z}k −→ product basis |eo1

s1 ⊗ · · · ⊗ e
ok
sk
〉

I 2k outcomes o = (o1, . . . , ok) ∈ {+,−}k

I probabilities
Pρ(o|s) =

〈
eo1
s1 ⊗ · · · ⊗ e

ok
sk
| ρ |eo1

s1 ⊗ · · · ⊗ e
ok
sk

〉
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Measurement procedure and statistical model1

S1 S2 S3 S4

O4O1 O2 O3

Measurement 
Setting

Ions prepared in 
joint state ⇢

Random Meas. 
Outcome

1. For each ion choose a spin direction to measure basis s ∈ {x, y, z}

2. measure each ion and obtain outcome o := (o1, . . . , ok) ∈ {1,−1}k

3. Repeat n times and collect counts of outcomes {No,s : o ∈ {1,−1}k}

Pρ
(
{N(o|s) : o ∈ {1,−1}k}

)
=

n!∏
o
N(o|s)!

∏
o

Pρ(o|s)N(o|s)

4. Repeat over all 3k choices of measurement set-ups

Total set of 3k × 2k � 4k projections is highly overcomplete in M(C2k )!
1statistical model based on counts is different from that of compressed sensing D. Gross et al, Phys. Rev. Lett. 2010



Measurement data

3k columns of length 2k

one column for each measurement setting

each column contains the counts totalling n = 100, of the 2k = 16 possible outcomes

frequencies of outcomes are bad estimates of probabilities, but overall info is high

[Dataset 4 ions (from Blatt group, Innsbruck)]
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Linear regression and least squares

Problem: linear regression

estimate the unknown vector x = (x1, . . . , xk) ∈ Rk given observations

Yi =
∑
j

Aijxj + εi

with known Aij and i.i.d εi ∼ N(0, σ2).

Least squares: Find x̂ which minimises∑
i

|Yi −
∑
j

Aij x̂j |2 = (Y−AX̂)T (Y−AX̂)

Explicit solution coinciding with maximum likelihood estimator

X̂ = (ATA)−1ATY

Covariance matrix of X̂

V ar(X̂) = σ2(ATA)−1



Linear regression and least squares

Problem: linear regression

estimate the unknown vector x = (x1, . . . , xk) ∈ Rk given observations

Yi =
∑
j

Aijxj + εi

with known Aij and i.i.d εi ∼ N(0, σ2).

Least squares: Find x̂ which minimises∑
i

|Yi −
∑
j

Aij x̂j |2 = (Y−AX̂)T (Y−AX̂)

Explicit solution coinciding with maximum likelihood estimator

X̂ = (ATA)−1ATY

Covariance matrix of X̂

V ar(X̂) = σ2(ATA)−1



Linear regression and least squares

Problem: linear regression

estimate the unknown vector x = (x1, . . . , xk) ∈ Rk given observations

Yi =
∑
j

Aijxj + εi

with known Aij and i.i.d εi ∼ N(0, σ2).

Least squares: Find x̂ which minimises∑
i

|Yi −
∑
j

Aij x̂j |2 = (Y−AX̂)T (Y−AX̂)

Explicit solution coinciding with maximum likelihood estimator

X̂ = (ATA)−1ATY

Covariance matrix of X̂

V ar(X̂) = σ2(ATA)−1



The least squares estimator

For large n frequencies are close to the probabilities of the corresponding outcome

fn(o|s) = N(o|s)
n

= pρ(o|s) + εn(o|s) (“multinomial error”)

fn = pρ + εn = Aρ̃+ εn

State estimation as a "linear regression" problem: least squares estimator

ρ̂
(ls)
n = arg min

τ
‖Aτ̃ − fn‖2

2 = (AtA)−1 ·At · fn

Disadvantages
I Least squares estimator is not a density matrix (not positive and trace one)
I Least squares estimator is too "noisy" for low rank states
I Least squares estimator minimises prediction rather than estimation error E‖ρ̂n − ρ‖2

2



Eigenvalues distribution for the least squares estimator

Eigenvalues decomposition for true state and least squares estimator

ρ =
r∑
i=1

λi|ψi〉〈ψi| ρ̂
(ls)
n =

d∑
i=1

λ̂i|ψ̂i〉〈ψ̂i|

If r � d = 2k, the MSE = E‖ρ̂(ls)
n − ρ‖2

2 is large due to variance contributions from many
eigenvalues λ̂i which estimate zero eigenvalues of ρ
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LEFT: n = 20 repetitions RIGHT: n = 100 repetitions



Norm-error upper bound for the least squares estimator2

operator-norm distance ‖ρ− τ‖ = |λmax(∆)|, ∆ := ρ− τ

norm-two distance ‖ρ− τ‖2
2 =
∑

i
|λi(∆)|2 ≤ d · ‖ρ− τ‖2 (*)

Theorem
For any ε > 0 small enough the following inequality holds with probability larger than 1− ε∥∥∥ρ̂(ls)

n − ρ
∥∥∥ ≤ νn(ε),

where the rate νn(ε)2 is

νn(ε)2 =
2
n

log
(2d
ε

)
= 2

3k

N
log
(2d
ε

)
with N := n · 3k the total number of measurements.

I Concentration inequality and (∗) give upper bound for the MSE

E
∥∥∥ρ̂(ls)

n − ρ
∥∥∥2

2
≤ C

6k · k
N

≈ k ·
(3

2

)k
·

#parameters
#samples

2C. Butucea, M.G. and T. Kypraios, New Journal of Physics, 17, 113050 (2015)
this improves on the 4k/N factor in the upper bound of P. Alquier, C. Butucea, et al, Phys. Rev. A (2013)



Idea of the proof

Write
ρ̂

(ls)
n − ρ =

∑
s

∑
i

Ws,i

where Ws,i are i.i.d. centred random matrices

Use matrix Bernstein inequality3 for i.i.d. Hermitian matrices

P(‖Y1 + ...+ Yn‖ ≥ t) ≤ 2d exp
(
−

t2/2
W + tV/3

)
.

where ‖Yj‖ ≤ V and ‖
∑

j
E(Y 2

j )‖ ≤W

3J. A. Tropp, Found Comput Math 12 389-434 (2012)
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Penalising small eigenvalues

Assume true state ρ of low rank: ρ =
∑r

i=1 λi|ψi〉〈ψi| with r � d

Idea: ‖ρ̂(ls)
n − ρ‖ ≈ νn ⇒ eigenvalues of ρ̂(ls)

n s.t. |λ̂i| ≤ νn may be "statistical noise"

Truncated versions of the LS estimator: order |λ̂i| ≥ · · · ≥ |λ̂d| and for each k ≤ d

ρ̂
(ls)
n =

d∑
i=1

λ̂i|ψ̂i〉〈ψ̂i| −→ ρ̂n(k) =
k∑
i=1

λ̂i|ψ̂i〉〈ψ̂i|
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RankNorm-two error E(k) := ‖ρ̂n(k)− ρ‖2
2 for a state of rank r = 6, as function of truncation rank k

Question: how to choose the truncation rank ?



Penalised least squares estimator

Choose rank k̂ := max{k : λ̂2
k ≥ ν

2
n} with |λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂d|

Equivalently, k̂ minimises the rank-penalised distance to the least squares

k̂ = arg min
k

[
‖ρ̂n(k)− ρ̂n‖2

2 + k · ν2
n

]
Penalised estimator: ρ̂(pen)

n := ρ̂n(k̂)
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Eigenvalues of true state ρ (blue) versus: LS (red) on LEFT and penalised estimator (red) RIGHT

for a rank 6 state with n = 100 repetitions



MSE upper bound for the penalised estimator4

Penalised estimator: with k̂ := max{k : λ̂2
k ≥ ν

2
n}

ρ̂
(ls)
n =

d∑
i=1

λ̂i|ψ̂i〉〈ψ̂i| −→ ρ̂
(pen)
n =

k̂∑
i=1

λ̂i|ψ̂i〉〈ψ̂i|

Theorem
Let ρ be a state of unknown rank r.
Let ε > 0 be a small parameter. Then with probability larger than 1− ε, we have

‖ρ̂(pen)
n − ρ‖2

2 ≤ C · r · νn(ε)2 = C

(3
2

)k
log
(
d

ε

)
dr

N

I Concentration inequality gives upper bound for the MSE

E
∥∥∥ρ̂(pen)

n − ρ
∥∥∥2

2
≤ Ck ·

(3
2

)k
·

#parameters(rank = r)
#samples

4C. Butucea, M.G. and T. Kypraios, New Journal of Physics, 17, 113050 (2015)
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Physical estimator

Disadvantage of penalised estimator: ρ̂(pen)
n may not be a state (positive, trace-one matrix)

Physical estimator ρ̂(phys)
n exploits the positivity properties of ρ:

ρ̂
(phys)
n = arg min

σ∈S(νn)

∥∥∥σ − ρ̃(ls)
n

∥∥∥2

2
,

I ρ̃
(ls)
n is the "normalised LS estimator" s.t. Trρ̃(ls)

n = 1
I Set of states at noise level νn

S(νn) = {σ : state with eigenvalues λj ∈ {0} ∪ (4νn, 1], j = 1, ..., d} .

Questions: can it be computed efficiently, and what is its MSE?



Physical estimator: implementation

Optimisation: solution is a truncated LS matrix ρ̂n(k̂) =
∑k̂

i=1 λ̂i|ψ̂i〉〈ψ̂i|

Truncation rank: simple iterative algorithm on eigenvalues arranged as λ̂1 ≥ · · · ≥ λ̂d
selects maximum k for which all eigenvalues of ρ̂n(k̂) are larger than threshold after being
normalised by shifting with constant
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Eigenvalues of true state ρ (blue circles) versus LS (red triangles) on LEFT vs. eigenvalues of physical estimator (rose) on RIGHT

for a rank 2 state with n = 20 repetitions



Physical estimator: upper bound5

Theorem
Let ρ be a state of unknown rank r.
Let ε > 0 be a small parameter, and assume that λr > 8νn(ε). Then, with probability larger
than 1− ε we have ∥∥∥ρ̂(phys)

n − ρ
∥∥∥2

2
≤ C

(3
2

)k
log
(
d

ε

)
dr

N

I Concentration inequality gives upper bound for the MSE

E
∥∥∥ρ̂(phys)

n − ρ
∥∥∥2

2
≤ Ck ·

(3
2

)k
·

#parameters(rank = r)
#samples

5C. Butucea, M.G. and T. Kypraios, ArXiv:1504.08295
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Choosing truncation rank by cross-validation

Norm-two error E(k):=‖ρ̂n(k)− ρ‖2
2 minimised by oracle estimator

Cross-validation:
I Split dataset in 5 independent batches and compute ρ̂(ls)

n;j and ρ̂(ls)
n;−j on batch j and

respectively all-but-j batches, for j = 1, . . . , 5.
I Replace E(k) by unbiased estimator (up to constant independent of k)

CV (k) =
1
5

5∑
i=1

∥∥∥ρ̂n;−j(k)− ρ̂(ls)
n;j

∥∥∥2

2
.

I Cross-validation estimator: ρ̂(cv)
n := ρ̂n(k̂) where k̂ is the minimiser of CV (k).
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Comparison of estimators: SEs for different states, with n = 100
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Boxplots of norm-two errors ‖ρ̂n − ρ‖2
2 of different estimators for states of ranks 1, 2, 6, 10 with n = 100 repetitions

(computed from 100 datasets)



Comparison of estimators: Empirical distribution of chosen rank
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Comparison of estimators: MSE for different states and repetitions n
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Can we estimate low rank states with reduced measurement settings ?6

Counting parameters: rank r state −→ r · d parameters −→ ≈ r settings (� 3k)

Random measurement design:
choose m random settings S := {s1, . . . , sm} and measure each setting n = N

m
times

Mean square error of MLE is stable for a large range of number of settings m

Mean square error E‖ρ̂(ml) − ρ‖2
2 for 4 ions states of ranks 1-5 and randomly chosen settings

6similar to “compressed sensing" D. Gross, et al, Phys. Rev. Lett. (2010) but uses “raw" rather than “coarse grained" data



Concentration for Fisher information matrix7

More randomness helps: consider measurements w.r.t. random bases (Haar measure)

Asymptotics: for large n mean square error of ML estimator scales as in Cramér-Rao bound

‖ρ̂(ml) − ρ‖2
2 ≈

1
N

Tr(I(ρ|S)−1G(ρ))

Fisher information matrix (per setting) converges to average

I(ρ|S) =
1
m

m∑
i=1

I(ρ|si) −→ Ī(ρ) =
∫

I(ρ|s)ds

Theorem (Fisher info & MSE concentrate with r · log rd settings)
Let ρ be rank r state with spectrum (1/r, . . . , 1/r, 0, . . . , 0).

If m = C(r + 1) log(2(2rd− r2 − 1)/δε2) then the bounds hold with probability 1− δ

(1− ε)I(ρ) ≤ I(ρ|S) ≤ (1 + ε)I(ρ)

(1− ε)Tr
[
I(ρ)−1G(ρ)

]
≤ Tr

[
I(ρ|S)−1G(ρ)

]
≤ (1 + ε)Tr

[
I(ρ)−1G(ρ)

]
7A. Acharya, T. Kypraios, M.G., New Journal of Physics (2016)



Eigenvalues and MSE concentration

Concentration of the eigenvalues of Fisher information matrix and the MSE for 4 ions states of ranks 1,2,3



Proof

Matrix Chernoff bound8

(1− ε)I(ρ) ≤ I(ρ|S) ≤ (1 + ε)I(ρ)

Number of settings required (up to log factors)

m ≈
λmax

λmin
:=

maxs λmaxI(ρ|s)
λmin(Ī)

Ī can be computed explicitly −→ λmin(Ī) = r/(r + 1)

Quantum Cramér-Rao bound

I(ρ|s) ≤ F (ρ) −→ λmaxI(ρ|s) ≤ λmaxF (ρ) = 2r

8Ahlswede R. and Winter A., IEEE Transactions Information Theory 48 569-579 (2002)



Log factors may not be necessary

Relative error w.r.t. asymptotic MSE for random settings, and pure states of 3-6 qubits.



Error upper bound for “compressive measurements”9

when λmin(ρ)→ 0 the Fisher information matrix does not concentrate

number of settings needed m = C
λmin(ρ) log

(
2(2rd−r2−1)

δ

)
interested only in the behaviour of the asymptotic MSE Tr

(
I(ρ|S)−1G(ρ)

)
Theorem (compressed sensing of rank r states)
Let ρ be a rank r state. If the number of settings is m = Cr log(2(2rd− r2 − 1)/δ), the
asymptotic MSE satisfies

Tr
(
I(ρ|S)−1G(ρ)

)
≤ C(2rd− r2 − 1)

with probability 1− δ.

9A. Acharya, M.G., arxiv:1609.03758



Lower bound

Question: are the proposed estimators "optimal" ?

Asymptotic minimax risk over states ρ ∈ Sd,r of rank r

Rminmax(r) := lim inf
n→∞

inf
ρ̂n

sup
ρ∈Sd,r

N · E
(
‖ρ̂n − ρ‖2

2
)

Theorem
The following lower bound holds for the asymptotic minimax risk

Rminmax(r) ≥ 2r(d− r).

I no estimation method can have rate faster than #parameters(rank=r)
#samples

I ratio between penalised and physical upper bound and minimax lower bound: k
(

3
2

)k



Idea of the proof

Minimax rate in terms of Fisher information

Rminmax(r) = 3k sup
ρ∈Sd,r

Tr
(
I−1(ρ)G(ρ)

)
Minimax risk is larger than Bayes risk with uniform prior over matrices with spectrum
(1/r, . . . , 1/r, 0, . . . 0)

Rminmax(r) ≥ Rπ(r, k) := 3k
∫

π(dρ)Tr(G(ρ)1/2I−1(ρ)G(ρ)1/2)

Since t 7→ t−1 is operator convex function∫
π(dρ)G1/2(ρ)I−1(ρ)G1/2(ρ) ≥

(∫
π(dρ)G−1/2(ρ)I(ρ)G−1/2(ρ)

)−1

Due to the rotation symmetry the integral can be computed explicitly using Weingarten
formulas



Outlook

New class of estimators based on spectral truncation of the LS estimator

I Can LS be replaced by a better linear estimators as starting point ?
I Better understanding of the role of positivity (e.g. LS with positivity constraints)
I Confidence intervals / regions

MSE concentration for random measurements settings design

I Concentration for random Pauli bases
I Behaviour near boundary (very small non-zero eigenvalues)
I Choosing number of settings for states with unknown rank


