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Microscopic Reversibility and Macroscopic Irreversibility

Microscopic Reversibility:
Time reversal invariance: ∃θ an involution on the phase space such that,

O ◦ f t−ti (xti ) = O ◦ θ ◦ f tf−t ◦ θ(xtf )

Example: θ(q) = q, θ(p) = −p.

Macroscopic Irreversibility:
Clausius (1850), thermodynamic:

Ep := ∆S ≥ 0,

Entropy always increases ⇒ Thermodynamic time ordering.
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Fluctuation relations

Developed in the nineties [Evans, Cohen, Gallavotti, Morris, Crooks . . . ].

I x = (xt)t : a path in phase space given by an Hamiltonian flow,

I σt(x0) = σ(xt): entropy production rate random variable (E(σt) = 1
t
Ept).

If the dynamical system is time reversal invariant, the transient fluctuation relation,

dP(
∫ t

0 σudu = s)

dP(
∫ t

0 σudu = −s)
= et s

holds.
Under Chaotic Hypothesis, for any open set O ⊂ R

lim
t→∞

1

t
log P

(
1
t

∫ t

0
σudu ∈ O

)
= − inf

s∈O
I (s),

With, s 7→ I (s) a good rate function such that:

I (s) ≥ 0, I (s) = 0 ⇐⇒ s = Ep and I (s) = I (−s)− s.
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Projection postulate and irreversibility

von Neumann (1932), 2 rules for quantum mechanics:

1. Projection postulate (PP): ρ→ ρ′ = PρP
tr[Pρ]

with proba tr[Pρ] (Irreversible),

2. Unitary evolution: ρt = e−iHtρe iHt (Reversible).

Projection Postulate Irreversibility ⇒ Quantum time ordering.

I Bohm (1951):“This [quantum] irreversibility greatly resembles that which appears
in thermodynamic processes”.

I Landau-Lifschitz (1978): 2nd law macroscopic expression of PP?
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Criticism: Two state–vector formalism

Aharonov, Bergmann and Lebowitz (1964): “This time asymmetry is actually related
to the manner in which statistical ensembles are constructed”

p(a then j1, j2, . . . , jn; b) 6= p(b then jn, jn−1, . . . , j1; a)

but,

p(j1, j2, . . . , jn; b|a) := |〈b|jn〉|2|〈jn|jn−1〉|2 · · · |〈j2|j1〉|2|〈j1|a〉|2 = p(jn, . . . , j2, j1; a|b).

Conditioning on initial and final states, restores time reversal invariance (TRI) at the
level of the measurement statistics.
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Full Counting Statistics and Fluctuation Relations

Kurchan (2000):

Hi =
∑
ε

ε|ε〉〈ε|, Hf =
∑
ε′
ε′|ε′〉〈ε′|

Work distribution:

Pt(W ) =
∑

W=ε′
f
−εi

p(εi then ε′f ) =
∑

W=ε′
f
−ε′i

|〈ε′f |Uεi 〉|
2 e−βεi

Z
.

0 t|

ρ ∝ e−βHi → |i〉〈i |

Hi → εi

|
Hf → εf

U|i〉 → |f 〉

W = ε′f − εi

U

Time Reversal Invariance ⇒ Crooks Fluctuation Relation: If,

∃Θ, s.t. Θ(Θ(X )) = X , Θ(i1) = −i1, Θ(U) = U∗, Θ(ρi ) = ρf

then,
dPt(W = w)

dPt(W = −w)
= eβw .
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Entropic fluctuation relation

Entropy production defined as a two time measurement of the system state:

1. Mesure − ln ρ: value si ,

2. Evolve with U := e−it(H+V ),

3. Measure − ln ρ: value sf .

4. Entropy production: tσ := sf − si .

If time reversal invariance is verified:

∃Θ, s.t. Θ(i1) = −i1, Θ(ρ) = ρ, Θ(H) = H, Θ(V ) = V .

Then the statistic of σ verifies:

S(ρt |ρ) = t

∫
R
σdPt(σ) and

dPt(σ = s)

dPt(σ = −s)
= et s .

⇒ Positive entropy production is exponentially more likely.

Issue: Two time projective measurement of a non local quantity.
⇒ experimental propositions of measurement of the FCS using an auxiliary qbit
interacting locally: Campisi, M. et al. New J. Phys. 15 (2013); Dorner, R. et al. PRL
110 (2013); Goold, J.et al. PRE 90 (2014); Mazzola, L. et al. PRL 110 (2013);
Roncaglia, A.J. et al. PRL 113 (2014).
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Entropy production of repeated measurements

Quantify: When can one choose the right movie order ? If it is possible how does the
probability of error decays ?

=⇒ Hypothesis Testing.

Why study repeated indirect measurements ?

I Experimentally relevant (Cavity QED, Interferometry . . . ),

I “Every day experience”,

I Because we can have results.
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Outline

1. Repeated measurement model,

2. Instrument distinguishability and relative entropy

3. Rényi relative entropy regularity, (Fluctuation relations),

4. Hypothesis testing and error exponents.
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A canonical experiment

S. Haroche group experiment:

Image: LKB ENS
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ

Hilbert space: H := C2
sys. ⊗ C2

hot ⊗ C2
cold .
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ⊗ βh, prob. 1
2
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi

ρ⊗ |i〉〈i |, prob. 〈i |βhi〉
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi

U

U(ρ⊗ |i〉〈i |)U∗

Dipolar, RWA:

U = exp(iτHRWA)

HRWA = ωσz ⊗ I + ωI ⊗ σz + λσ+ ⊗ σ− + h.c.

Hfull = ωσz ⊗ I + ωI ⊗ σz + λσx ⊗ σx
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi εj

UjiρU
∗
ij

tr[UjiρU
∗
ij ]
⊗ |j〉〈j |,

prob. tr[UjiρU
∗
ij ]× 〈i |βhi〉
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi εj

ρ(h; j , i) :=
Vh;j,iρV

∗
h;j,i

tr[V∗
h;j,i

Vh;j,iρ]
,

prob. tr[V ∗h;j,iVh;j,iρ].

Vh;j,i = Uji

√
〈i |βhi〉,

∆E = εj − εi .
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SystemMeasure Measure
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Th
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ(c; j , i) :=
Vc;j,iρV

∗
c;j,i

tr[V∗c;j,iVc;j,iρ]
,

prob. tr[V ∗c;j,iVc;j,iρ].

Measurement result sequence: ((b1; i1, j1), . . . , (bt ; it , jt)) = (k1, . . . , kt) with
probability

P(k1, . . . , kt) = tr[Vkt · · ·Vk1
ρV ∗k1

· · ·Vkt ].

Remark: Two time measurement process studied by Crooks[PRA ’08] and Horowitz, Parrondo[NJP
’13]
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Quantum instruments

Definition (Instruments)
Let

J := {Φk : Md (C)→ Md (C)}k=1,...,`

be a familly of completely positive (CP) maps such that the CP map

Φ :=
∑̀
k=1

Φk

is unital (CPU). Then J is called an instrument.

Definition (Unraveling)
Let ρ ∈ M+,1

d (C) be a state on Cd , then the probability measure P on

Ω = {1, . . . , `}N defined by the marginals,

Pt(k1, . . . , kt) = tr(ρΦk1
◦ · · · ◦ Φkt (Id ))

is called an unraveling of the CPU map Φ.
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Probability space

I Alphabet of the possible measurement outcomes: {1, . . . , `}.
I Realization space: infinite sequences of letters, Ω = {1, . . . , `}N.

Finite words:
Ωt := {1, . . . , `}t , Ωfin = ∪t∈NΩt .

I σ–algebra: F := σ({ω ∈ Ω|ωs = ks , 1 ≤ s ≤ n}),

I Measure on the words given by an instrument and a state: (J , ρ) 7→ P,

P(k1, . . . , kt) = tr(ρΦk1
◦ · · · ◦ Φkt (Id )),

I Sequence shift: f ◦ φt(ω0, ω1, . . .) = f (ωt , ωt+1, . . .).
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Probability measure properties

Ergodic property:

I If ρ is the unique invariant state of Φ∗, then (Ω,P, φ) is ergodic.

lim
T→∞

1

T

T∑
t=1

E(g f ◦ φt) = E(g)E(f ).

From now on, we assume ρ is the unique invariant state of Φ∗.

Upper Bernoulli property:

I ∃C > 0 such that, for any finite word k1, . . . , ks , ks+1, . . . , kt ,

P(k1, . . . , ks , ks+1, . . . , kt) ≤ CP(k1, . . . , ks)P(ks+1, . . . , kt).
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Hypothesis testing

Given two possible instruments for an experiment (J , Ĵ ) can we (and how efficiently
can we) infer from the data (ωs)s∈N what instrument is used?

H0 The observed quantum measurements are described by (J , ρ).

H1 The observed quantum measurements are described by (Ĵ , ρ̂).
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Arrow of time hypothesis testing

Let θ : {1, . . . , `} → {1, . . . , `} be an involution (i.e. θ(θ(k)) = k).
A time reversal of the measurement results is then:

Θ(k1, . . . , kt) := (θ(kt), . . . , θ(k1)).

The time reversed probability measure over Ω is:

P̂(k1, . . . , kt) = P(θ(kt), . . . , θ(k1)).

P̂ is the unraveling of Φ̂ by the instrument Ĵ := {Φ̂k}k with

Φ̂k (X ) = ρ−
1
2 Φ∗θ(k)(ρ

1
2 Xρ

1
2 )ρ−

1
2 .
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Time reversal of the two baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

θ(b; i , j) = (b; j , i)
((c,+∆E), (h,−∆E), . . . , (h, 0))

reversed is
((c,−∆E), (h,+∆E), . . . , (h, 0)).
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Comparing P and P̂

Assume non finite time distinguishability: Pt(A) > 0⇔ P̂t(A) > 0 for all t ∈ N.

We study the relative entropy,

I In mean:

S(Pt |P̂t) :=
∑
ωt

Pt(ωt) log
Pt(ωt)

P̂t(ωt)
≥ 0.

I As a random variable:

σt =
1

t
log

Pt(ωt)

P̂t(ωt)
.

Remark: For the time arrow, since the time reversal is an involution:

S(Pt |P̂t) =
∑
ωt∈Ωt

Pt(ωt) log[Pt(ωt)/P̂t(ωt)] = S(P̂t |Pt).

The relative entropy is then the entropy production and σt the entropy production
rate.
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Two sub additive convergence results

Lemma (Fekete)
Let (at)t≥1 be a sequence of real numbers such that for a c ∈ R and all s, t ∈ N,

at+s ≤ at + as + c.

Then

lim
t→∞

1

t
at = inf

t≥1

at + c

t
.

Theorem (Kingman)
Let Xt : Ω→ R be a sequence of random variables such that E(|Xt |) <∞. Assume
∃C ∈ R such that for all t, s ∈ N,

Xt+s(ω) ≤ Xt(ω) + Xs ◦ φt(ω) + C

with P probability 1. Then the limit

x(ω) := lim
t→∞

1

t
Xt(ω)

exists with probability 1 and is φ invariant. Moreover

lim
t→∞

1

t
E(Xt) = E(x).
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Relative entropy convergence

Theorem (B., Jaksic, Pautrat, Pillet ’16)
Assume P and P̂ are upper Bernoulli and φ-invariant. Then,

Ep := lim
t→∞

1

t
S(Pt |P̂t)

exists. Assume moreover that P and P̂ are ergodic. Then,

σ := lim
t→∞

σt = E(σ) = Ep. P− almost surely.

Moreover,

Ep = 0⇔ P = P̂ and Ep > 0⇔ P(σ > 0) = 1 and P̂(σ > 0) = 0.
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Relative entropy convergence

The asymptotic relative entropy random variable distinguishes between P and P̂.
Given an observed sequence of measurement ω ∈ Ω,

I Either σ ≥ 0 and J is the instrument used (i.e. the movie is played forward),

I Or σ ≤ 0 and Ĵ is the instrument used (i.e. the movie is played backward).

Remark
For time arrow hypothesis testing,

Ep = 0 ∼ Detailed balance condition.

With Detailed balance condition:
Φ ≡ Φ̂.

(←) can be proved for a family of appropriate unraveling.
(→) partial from the theory of finitely correlated states [Fannes, Nachtergaele, Werner
CMP ’92].
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Entropy production

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

σt '
1

t
(

1

Th
∆Qh +

1

Tc
∆Qc ).

Since JQ := limt→∞
1
t

∆Qc = limt→∞− 1
t

∆Qh with probability 1,

Ep =
Th − Tc

TcTh
JQ > 0 ⇒ sign(JQ) = sign(Th − Tc ).

Since JQ = ∆E 1
2

(P(c; +∆E)− P(c;−∆E)),

Ep = 0⇔ Tc = Th.

Remark: This is not true for full dipolar interaction where Ep > 0 even if Th = Tc .
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Beyond the law of large numbers: Rényi relative entropy.

Cumulant generating function of −tσt :

et(α) := log
∑
ωt∈Ωt

Pt(ωt)
(1−α)P̂t(ωt)

α = Sα(Pt |P̂t).

Remark: For the time arrow, since
∑
ωt

f (ωt) =
∑
ω̂t

f (ω̂t),

et(α) = et(1− α).

Hence, the transient fluctuation relation holds: Pt (σt=s)
Pt (σt=−s)

= et s .

Theorem (B.,Jaksic, Pautrat, Pillet ’16)
Assume P and P̂ are upper Bernoulli and ergodic. Then, ∀α ∈ [0, 1],

e(α) := lim
t→∞

1

t
et(α)

exists, is continuous, convex, satisfies e(0) = e(1) = 0 and

∂+
αe(α)|α=0 = −Ep.

For the time arrow hypothesis testing: e(α) = e(1− α).
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Rényi relative entropy as an entropic pressure

Rényi relative entropy can be obtained through a variational principle.

1

t
et(α) =

1

t
max

Qt

(EQt (log Pt)− αEQt (σt) + S(Qt)).

Thermodynamic equivalent: Canonical Gibbs distribution maximises the free energy.

FL ∼ et(α), SL ∼ S(Qt) and βEL ∼ αEQt (σt)− EQt (log Pt).

Since −Et+s ≤ −Et − Es − C ⇒ sub additive thermodynamic formalism1 ⇒ regularity
of e(α).

Let Pφ be the set of φ invariant probability measures over Ω.
For all α ∈ [0, 1] there exists Q 7→ fα(Q) affine and upper semicontinuous such that:

e(α) = sup
Q∈Pφ

fα(Q)

Let Peq(α) be the set of probability measures for which the supremum is reached.
If Peq(α) is a singleton, then α 7→ e(α) is differentiable on ]0, 1[.

1[Barreira ’10, Feng ’09]
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Differentiability of e(α)

Assumption (C): (Weaker than lower Bernoulli) There exists τ and C ′ > 0 such that
for all s, t, ωt ∈ Ωt , νs ∈ Ωs , there exists ξu ∈ Ωu with u ≤ τ such that

P(ωt , ξu , νs)P̂(ωt , ξu , νs) ≥ C ′P(ωt)P(νs)P̂(ωt)P̂(νs).

Theorem (B., Jaksic, Pautrat, Pillet, ’16)
If Assumption (C) holds, α 7→ e(α) is differentiable on ]0, 1[.

Assumption (D): (Quasi Bernoulli) There exists C > 0 such that for all s, t,
ωt ∈ Ωt , νs ∈ Ωs ,

C−1P(ωt)P(νs) ≤ P(ωt , νs) ≤ CP(ωt)P(νs).

Theorem (B., Jaksic, Pautrat, Pillet ’16)
If both P and P̂ verify Assumption (D), then, α 7→ e(α) exists and is differentiable on
R.
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Sufficient condition for Assumption (C)

Proposition (B., Jaksic, Pautrat, Pillet ’16)
Fix (J , Ĵ ) two instruments on Md (C). Let O ⊂ Md2 (C) be the smallest C∗–algebra
containing the cluster points of the sequences(

Φωt ⊗ Φ̂ωt (Id2 )

tr(Φωt ⊗ Φ̂ωt (Id2 ))

)
t∈N

and

(
Φ∗ωt
⊗ Φ̂∗ωt

(Id2 )

tr(Φ∗ωt
⊗ Φ̂∗ωt

(Id2 ))

)
t∈N

for any sequence of words (ωt)t∈N ⊂ Ωfin with Φω = Φω1 ◦ · · · ◦ Φω|a| .

If the CP map,

Ψ :=
∑̀
k=1

Φk ⊗ Φ̂k

is irreducible on O, then Assumption (C) holds.
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Rényi entropy and heat cumulant generating function.

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

e(α) is the limit cumulant generating function of

−σt '
1

t

Tc − Th

TcTh
∆Qc .

It can be explicitly computed using spectral techniques on CP maps[van Horssen, Guta
JMP ’15].
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e(α) for different Th − Tc

e(1/2) decreases when Th − Tc increases.
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Fluctuation relation for time arrow testing

The entropy production random variable verifies a local large deviation principle.

I (s) := sup
α∈R

(αs − e(α)).

From the symmetry e(α) = e(1− α), this rate function is such that

I (−s)− I (s) = s and I (Ep) = 0.

Theorem
If Assumption (C) holds, for any s ∈]− Ep,Ep[,

lim
ε↓0

lim
t→∞

1

t
log Pt(|σt − s| < ε) = −I (s)

lim
ε↓0

lim
t→∞

1

t
log Pt(|σt + s| < ε) = −I (−s) = −(I (s) + s)

If Assumption (D) holds, then both previous limit hold for any s ∈ R.
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Hypothesis testing

H0 The observed quantum measurements are described by (J , ρ).

H1 The observed quantum measurements are described by (Ĵ , ρ̂).

For each time t let Tt be an event whose realization implies we decide “H0 is true”.

Example: T t = {ωt ∈ Ωt |σt > 0}.

Then,

I Pt(T c
t ) is the probability to reject H0 when it is true (Type I error).

I P̂t(Tt) is the probability to accept H0 when H1 is true (Type II error).
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Stein’s error exponents

Stein error exponent for ε ∈]0, 1[:

st(ε) := min
Tt
{P̂t(Tt)|Tt ⊂ Ωt and Pt(T c

t ) ≤ ε}.

“st(ε) is the minimal error of type II while we control the error of type I.”

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)
Assume P and P̂ are upper Bernoulli and ergodic. Then, for all ε ∈]0, 1[,

lim
t→∞

1

t
log st(ε) = −Ep.

The entropy production corresponds to the exponential decreasing rate of the error of
type II given any control on the error of type I.
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Hoeffding’s error exponents

These exponents are similar to Stein’s one, with a tighter control on the type I error.

h(s) := inf
Tt
{lim sup

t→∞

1

t
log P̂t(Tt) | lim sup

t→∞

1

t
log Pt(T c

t ) < −s}

h(s) := inf
Tt
{lim inf

t→∞

1

t
log P̂t(Tt) | lim sup

t→∞

1

t
log Pt(T c

t ) < −s}

h(s) := inf
Tt
{ lim
t→∞

1

t
log P̂t(Tt) | lim sup

t→∞

1

t
log Pt(T c

t ) < −s}.

For s ≥ 0, set

Ψ(s) = − sup
α∈[0,1[

−sα− e(α)

1− α
.

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)
Assume P and P̂ are upper Bernoulli and ergodic, and that Assumption (C) holds.
Then for s ≥ 0,

h(s) = h(s) = h(s) = Ψ(s).

33 / 38



Chernoff’s exponents

Assume a priori equiprobability for both hypothesis H0 and H1. Take the test,

T t = {ωt ∈ Ωt |σt ≥ 0}.

Then, the total probability of error is:

ct :=
1

2
Pt(T c

t ) +
1

2
P̂t(T t) =

1

2
(1− ‖Pt − P̂t‖TV ).

Chernoff exponents are:

c := lim sup
t→∞

1

t
log ct and c := lim inf

t→∞

1

t
log ct .

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)
Assume P and P̂ are upper Bernoulli and ergodic. Let α∗ := argminα∈[0,1] e(α).
Then,

I c ≤ e(α∗) and c ≥ e(α∗)− 1
2
∂+e(α∗).

Particularly Ep > 0⇒ c < 0.

I If Assumption (C) holds, c = c = e(α∗).

Remark: For time arrow hypothesis testing, α∗ = 1
2

.
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e(α) and error exponents
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A non trivial example: The Keep–Switch instrument

Consider the two state Markov process with stochastic matrix P :=

(
q1 p1

p2 q2

)
. The

two states are not accessible. One only knows if the particle following the Markov
process stayed on its site (K) or switches site (S). The probability of sequences of keep
and flip is given by the following instrument:
Let J := {ΦK ,ΦS} with,

ΦK

((
x 0
0 y

))
=

(
q1x 0

0 q2y

)
, ΦS

((
x 0
0 y

))
=

(
yp1 0
0 xp2

)
.

We do not know if our instrument gives a signal when the particle stays in its site or
switches. The instrument Ĵ is Ĵ = {Φ̂K = ΦS , Φ̂S = ΦK}.

We test the alternative (J , Ĵ ).
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A non trivial example: The Keep–Switch instrument

Proposition (B., Jaksic, Pautrat, Pillet ’17)

1. The Keep–Switch hypothesis testing verifies our assumptions and particularly
Assumption (C).

2. P is not quasi Bernoulli (does not satisfy (D)).

3. The limit α 7→ e(α) of α 7→ et(α) exists and is differentiable on R. It is real
analytic on R \ {0, 1} but non twice differentiable in 0 and 1.

4. The CLT does not hold for the entropy production. Instead,

σt − tEp
√
t

w−→
t→∞

X + |Z |

with X and Z two centered Gaussian random variables.
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Open questions

I Algebraic condition equivalent to Assumption (C),

I Φ irreducible and Pt ∼ P̂t ∀t such that α 7→ e(α) not differentiable on ]0, 1[,

I Irregularities outside ]0, 1[ and lower order Stein’s exponents,

I Continuous time version,

I Entangled probes,

I Time reversal of the underlying Markov chain on the system.
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