Hypothesis testing for repeated quantum measurements and the emergence of the arrow of time joint work with V. Jaksic, Y. Pautrat, C.-A. Pillet

Tristan Benoist

IMT, Université Paul Sabatier

Toulouse, January 2017

Reversibility and irreversibility

Edited from Wake Forest University Physics Department video.

Edited from anonymous creator animated graphic.

Microscopic Reversibility and Macroscopic Irreversibility

Microscopic Reversibility:

Time reversal invariance: $\exists \theta$ an involution on the phase space such that,

$$
O \circ f^{t-t_{i}}\left(x_{t_{i}}\right)=O \circ \theta \circ f^{t_{f}-t} \circ \theta\left(x_{t_{f}}\right)
$$

Example: $\theta(q)=q, \theta(p)=-p$.

Macroscopic Irreversibility:

Clausius (1850), thermodynamic:

$$
E p:=\Delta S \geq 0
$$

Entropy always increases \Rightarrow Thermodynamic time ordering.

Fluctuation relations

Developed in the nineties [Evans, Cohen, Gallavotti, Morris, Crooks ...].

- $\mathbf{x}=\left(x_{t}\right)_{t}$: a path in phase space given by an Hamiltonian flow,
- $\sigma_{t}\left(x_{0}\right)=\sigma\left(x_{t}\right)$: entropy production rate random variable $\left(\mathbb{E}\left(\sigma_{t}\right)=\frac{1}{t} E p_{t}\right)$.

If the dynamical system is time reversal invariant, the transient fluctuation relation,

$$
\frac{d P\left(\int_{0}^{t} \sigma_{u} d u=s\right)}{d P\left(\int_{0}^{t} \sigma_{u} d u=-s\right)}=e^{t s}
$$

holds.
Under Chaotic Hypothesis, for any open set $O \subset \mathbb{R}$

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log P\left(\frac{1}{t} \int_{0}^{t} \sigma_{u} d u \in O\right)=-\inf _{s \in O} I(s)
$$

With, $s \mapsto I(s)$ a good rate function such that:

$$
I(s) \geq 0, \quad I(s)=0 \Longleftrightarrow s=E p \quad \text { and } \quad I(s)=I(-s)-s
$$

Projection postulate and irreversibility

von Neumann (1932), 2 rules for quantum mechanics:

1. Projection postulate (PP): $\rho \rightarrow \rho^{\prime}=\frac{P \rho P}{\operatorname{tr}[P \rho]}$ with proba $\operatorname{tr}[P \rho] \quad$ (Irreversible),
2. Unitary evolution: $\rho_{t}=e^{-i H t} \rho e^{i H t}$ (Reversible).
Projection Postulate Irreversibility \Rightarrow Quantum time ordering.

- Bohm (1951): "This [quantum] irreversibility greatly resembles that which appears in thermodynamic processes".
- Landau-Lifschitz (1978): $2^{\text {nd }}$ law macroscopic expression of PP?

Criticism: Two state-vector formalism

Aharonov, Bergmann and Lebowitz (1964): "This time asymmetry is actually related to the manner in which statistical ensembles are constructed"

$$
p\left(a \text { then } j_{1}, j_{2}, \ldots, j_{n} ; b\right) \neq p\left(b \text { then } j_{n}, j_{n-1}, \ldots, j_{1} ; a\right)
$$

but,

$$
p\left(j_{1}, j_{2}, \ldots, j_{n} ; b \mid a\right):=\left|\left\langle b \mid j_{n}\right\rangle\right|^{2}\left|\left\langle j_{n} \mid j_{n-1}\right\rangle\right|^{2} \cdots\left|\left\langle j_{2} \mid j_{1}\right\rangle\right|^{2}\left|\left\langle j_{1} \mid a\right\rangle\right|^{2}=p\left(j_{n}, \ldots, j_{2}, j_{1} ; a \mid b\right) .
$$

Conditioning on initial and final states, restores time reversal invariance (TRI) at the level of the measurement statistics.

Full Counting Statistics and Fluctuation Relations

Kurchan (2000):

$$
H_{i}=\sum_{\epsilon} \epsilon|\epsilon\rangle\langle\epsilon|, \quad H_{f}=\sum_{\epsilon^{\prime}} \epsilon^{\prime}\left|\epsilon^{\prime}\right\rangle\left\langle\epsilon^{\prime}\right|
$$

Work distribution:

$$
\begin{array}{rlrl}
P_{t}(W) & =\sum_{W=\epsilon_{f}^{\prime}-\epsilon_{i}} p\left(\epsilon_{i} \text { then } \epsilon_{f}^{\prime}\right)=\sum_{W=\epsilon_{f}^{\prime}-\epsilon_{i}^{\prime}}\left|\left\langle\epsilon_{f}^{\prime} \mid U \epsilon_{i}\right\rangle\right|^{2} & \frac{e^{-\beta \epsilon_{i}}}{Z} . \\
\rho \propto e^{-\beta H_{i}} \rightarrow|i\rangle\langle i| & U & U|i\rangle & \rightarrow|f\rangle \\
0 & \longrightarrow t \\
H_{i} & \rightarrow \epsilon_{i} & W=\epsilon_{f}^{\prime}-\epsilon_{i} & H_{f}
\end{array} \rightarrow \epsilon_{f} . t .
$$

Time Reversal Invariance \Rightarrow Crooks Fluctuation Relation: If,

$$
\exists \Theta, \text { s.t. } \Theta(\Theta(X))=X, \quad \Theta(i \mathbb{1})=-i \mathbb{1}, \quad \Theta(U)=U^{*}, \quad \Theta\left(\rho_{i}\right)=\rho_{f}
$$

then,

$$
\frac{d P_{t}(W=w)}{d P_{t}(W=-w)}=e^{\beta w}
$$

Entropic fluctuation relation

Entropy production defined as a two time measurement of the system state:

1. Mesure $-\ln \rho$: value s_{i},
2. Evolve with $U:=e^{-i t(H+V)}$,
3. Measure $-\ln \rho$: value s_{f}.
4. Entropy production: $t \sigma:=s_{f}-s_{i}$.

If time reversal invariance is verified:

$$
\exists \Theta, \text { s.t. } \Theta(i \mathbb{1})=-i \mathbb{1}, \quad \Theta(\rho)=\rho, \quad \Theta(H)=H, \quad \Theta(V)=V
$$

Then the statistic of σ verifies:

$$
\begin{aligned}
& S\left(\rho_{t} \mid \rho\right)=t \int_{\mathbb{R}} \sigma d P_{t}(\sigma) \quad \text { and } \quad \frac{d P_{t}(\sigma=s)}{d P_{t}(\sigma=-s)}=e^{t s} . \\
\Rightarrow & \text { Positive entropy production is exponentially more likely. }
\end{aligned}
$$

Issue: Two time projective measurement of a non local quantity.
\Rightarrow experimental propositions of measurement of the FCS using an auxiliary qbit interacting locally: Campisi, M. et al. New J. Phys. 15 (2013); Dorner, R. et al. PRL 110 (2013); Goold, J.et al. PRE 90 (2014); Mazzola, L. et al. PRL 110 (2013); Roncaglia, A.J. et al. PRL 113 (2014).

Entropy production of repeated measurements

Quantify: When can one choose the right movie order ? If it is possible how does the probability of error decays ?
\Longrightarrow Hypothesis Testing.
Why study repeated indirect measurements ?

- Experimentally relevant (Cavity QED, Interferometry ...),
- "Every day experience",
- Because we can have results.

Outline

1. Repeated measurement model,
2. Instrument distinguishability and relative entropy
3. Rényi relative entropy regularity, (Fluctuation relations),
4. Hypothesis testing and error exponents.

A canonical experiment

S. Haroche group experiment:

Image: LKB ENS

Repeated indirect measurements, a two heat baths example

Hilbert space: $\mathcal{H}:=\mathbb{C}_{\text {sys. }}^{2} \otimes \mathbb{C}_{\text {hot }}^{2} \otimes \mathbb{C}_{\text {cold }}^{2}$.

Repeated indirect measurements, a two heat baths example

Repeated indirect measurements, a two heat baths example

Repeated indirect measurements, a two heat baths example

Dipolar, RWA:

$$
\begin{gathered}
U=\exp \left(i \tau H_{R W A}\right) \\
H_{R W A}=\omega \sigma_{z} \otimes I+\omega I \otimes \sigma_{z}+\lambda \sigma_{+} \otimes \sigma_{-}+\text {h.c. } \\
H_{\text {full }}=\omega \sigma_{z} \otimes I+\omega I \otimes \sigma_{z}+\lambda \sigma_{x} \otimes \sigma_{x}
\end{gathered}
$$

Repeated indirect measurements, a two heat baths example

Repeated indirect measurements, a two heat baths example

T_{c}
Measurement result sequence: $\left(\left(b_{1} ; i_{1}, j_{1}\right), \ldots,\left(b_{t} ; i_{t}, j_{t}\right)\right)=\left(k_{1}, \ldots, k_{t}\right)$ with probability

$$
\mathbb{P}\left(k_{1}, \ldots, k_{t}\right)=\operatorname{tr}\left[V_{k_{t}} \cdots V_{k_{1}} \rho V_{k_{1}}^{*} \cdots V_{k_{t}}\right] .
$$

Remark: Two time measurement process studied by Crooks[PRA '08] and Horowitz, Parrondo[NJP '13]

Quantum instruments

Definition (Instruments)

Let

$$
\mathcal{J}:=\left\{\Phi_{k}: M_{d}(\mathbb{C}) \rightarrow M_{d}(\mathbb{C})\right\}_{k=1, \ldots, \ell}
$$

be a familly of completely positive (CP) maps such that the CP map

$$
\Phi:=\sum_{k=1}^{\ell} \Phi_{k}
$$

is unital (CPU). Then \mathcal{J} is called an instrument.

Definition (Unraveling)

Let $\rho \in M_{d}^{+, 1}(\mathbb{C})$ be a state on \mathbb{C}^{d}, then the probability measure \mathbb{P} on $\Omega=\{1, \ldots, \ell\}^{\mathbb{N}}$ defined by the marginals,

$$
\mathbb{P}_{t}\left(k_{1}, \ldots, k_{t}\right)=\operatorname{tr}\left(\rho \Phi_{k_{1}} \circ \cdots \circ \Phi_{k_{t}}\left(I_{d}\right)\right)
$$

is called an unraveling of the CPU map Φ.

Probability space

- Alphabet of the possible measurement outcomes: $\{1, \ldots, \ell\}$.
- Realization space: infinite sequences of letters, $\Omega=\{1, \ldots, \ell\}^{\mathbb{N}}$. Finite words:

$$
\Omega_{t}:=\{1, \ldots, \ell\}^{t}, \quad \Omega_{\mathrm{fin}}=\cup_{t \in \mathbb{N}} \Omega_{t}
$$

- σ-algebra: $\mathcal{F}:=\sigma\left(\left\{\omega \in \Omega \mid \omega_{s}=k_{s}, 1 \leq s \leq n\right\}\right)$,
- Measure on the words given by an instrument and a state: $(\mathcal{J}, \rho) \mapsto \mathbb{P}$,

$$
\mathbb{P}\left(k_{1}, \ldots, k_{t}\right)=\operatorname{tr}\left(\rho \Phi_{k_{1}} \circ \cdots \circ \Phi_{k_{t}}\left(I_{d}\right)\right),
$$

- Sequence shift: $f \circ \phi^{t}\left(\omega_{0}, \omega_{1}, \ldots\right)=f\left(\omega_{t}, \omega_{t+1}, \ldots\right)$.

Probability measure properties

Ergodic property:

- If ρ is the unique invariant state of Φ^{*}, then $(\Omega, \mathbb{P}, \phi)$ is ergodic.

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left(g f \circ \phi^{t}\right)=\mathbb{E}(g) \mathbb{E}(f) .
$$

From now on, we assume ρ is the unique invariant state of Φ^{*}.

Upper Bernoulli property:

- $\exists C>0$ such that, for any finite word $k_{1}, \ldots, k_{s}, k_{s+1}, \ldots, k_{t}$,

$$
\mathbb{P}\left(k_{1}, \ldots, k_{s}, k_{s+1}, \ldots, k_{t}\right) \leq C \mathbb{P}\left(k_{1}, \ldots, k_{s}\right) \mathbb{P}\left(k_{s+1}, \ldots, k_{t}\right) .
$$

Hypothesis testing

Given two possible instruments for an experiment ($\mathcal{J}, \widehat{\mathcal{J}}$) can we (and how efficiently can we) infer from the data $\left(\omega_{s}\right)_{s \in \mathbb{N}}$ what instrument is used?
H_{0} The observed quantum measurements are described by (\mathcal{J}, ρ).
H_{1} The observed quantum measurements are described by $(\widehat{\mathcal{J}}, \widehat{\rho})$.

Arrow of time hypothesis testing

Let $\theta:\{1, \ldots, \ell\} \rightarrow\{1, \ldots, \ell\}$ be an involution (i.e. $\theta(\theta(k))=k$). A time reversal of the measurement results is then:

$$
\Theta\left(k_{1}, \ldots, k_{t}\right):=\left(\theta\left(k_{t}\right), \ldots, \theta\left(k_{1}\right)\right) .
$$

The time reversed probability measure over Ω is:

$$
\widehat{\mathbb{P}}\left(k_{1}, \ldots, k_{t}\right)=\mathbb{P}\left(\theta\left(k_{t}\right), \ldots, \theta\left(k_{1}\right)\right) .
$$

$\widehat{\mathbb{P}}$ is the unraveling of $\widehat{\Phi}$ by the instrument $\widehat{\mathcal{J}}:=\left\{\widehat{\Phi}_{k}\right\}_{k}$ with

$$
\widehat{\Phi}_{k}(X)=\rho^{-\frac{1}{2}} \Phi_{\theta(k)}^{*}\left(\rho^{\frac{1}{2}} X \rho^{\frac{1}{2}}\right) \rho^{-\frac{1}{2}} .
$$

Time reversal of the two baths example

$\theta(b ; i, j)=(b ; j, i)$

$$
((c,+\Delta E),(h,-\Delta E), \ldots,(h, 0))
$$

reversed is

$$
((c,-\Delta E),(h,+\Delta E), \ldots,(h, 0)) .
$$

Time reversal of the two baths example

$\theta(b ; i, j)=(b ; j, i)$

$$
((c,+\Delta E),(h,-\Delta E), \ldots,(h, 0))
$$

reversed is

$$
((c,-\Delta E),(h,+\Delta E), \ldots,(h, 0)) .
$$

Time reversal of the two baths example

$\theta(b ; i, j)=(b ; j, i)$

$$
((c,+\Delta E),(h,-\Delta E), \ldots,(h, 0))
$$

reversed is

$$
((c,-\Delta E),(h,+\Delta E), \ldots,(h, 0)) .
$$

Time reversal of the two baths example

$\theta(b ; i, j)=(b ; j, i)$

$$
((c,+\Delta E),(h,-\Delta E), \ldots,(h, 0))
$$

reversed is

$$
((c,-\Delta E),(h,+\Delta E), \ldots,(h, 0)) .
$$

Comparing \mathbb{P} and $\widehat{\mathbb{P}}$

Assume non finite time distinguishability: $\mathbb{P}_{t}(A)>0 \Leftrightarrow \widehat{\mathbb{P}}_{t}(A)>0$ for all $t \in \mathbb{N}$.
We study the relative entropy,

- In mean:

$$
S\left(\mathbb{P}_{t} \mid \widehat{\mathbb{P}}_{t}\right):=\sum_{\omega_{t}} \mathbb{P}_{t}\left(\omega_{t}\right) \log \frac{\mathbb{P}_{t}\left(\omega_{t}\right)}{\widehat{\mathbb{P}}_{t}\left(\omega_{t}\right)} \geq 0
$$

- As a random variable:

$$
\sigma_{t}=\frac{1}{t} \log \frac{\mathbb{P}_{t}\left(\omega_{t}\right)}{\widehat{\mathbb{P}}_{t}\left(\omega_{t}\right)}
$$

Remark: For the time arrow, since the time reversal is an involution:

$$
S\left(\mathbb{P}_{t} \mid \widehat{\mathbb{P}}_{t}\right)=\sum_{\omega_{t} \in \Omega_{t}} \mathbb{P}_{t}\left(\omega_{t}\right) \log \left[\mathbb{P}_{t}\left(\omega_{t}\right) / \widehat{\mathbb{P}}_{t}\left(\omega_{t}\right)\right]=S\left(\widehat{\mathbb{P}}_{t} \mid \mathbb{P}_{t}\right)
$$

The relative entropy is then the entropy production and σ_{t} the entropy production rate.

Two sub additive convergence results

Lemma (Fekete)

Let $\left(a_{t}\right)_{t \geq 1}$ be a sequence of real numbers such that for a $c \in \mathbb{R}$ and all $s, t \in \mathbb{N}$,

$$
a_{t+s} \leq a_{t}+a_{s}+c
$$

Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} a_{t}=\inf _{t \geq 1} \frac{a_{t}+c}{t}
$$

Theorem (Kingman)

Let $X_{t}: \Omega \rightarrow \mathbb{R}$ be a sequence of random variables such that $\mathbb{E}\left(\left|X_{t}\right|\right)<\infty$. Assume $\exists C \in \mathbb{R}$ such that for all $t, s \in \mathbb{N}$,

$$
X_{t+s}(\omega) \leq X_{t}(\omega)+X_{s} \circ \phi^{t}(\omega)+C
$$

with \mathbb{P} probability 1 . Then the limit

$$
x(\omega):=\lim _{t \rightarrow \infty} \frac{1}{t} X_{t}(\omega)
$$

exists with probability 1 and is ϕ invariant. Moreover

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left(X_{t}\right)=\mathbb{E}(x) .
$$

Relative entropy convergence

Theorem (B., Jaksic, Pautrat, Pillet '16)
Assume \mathbb{P} and $\widehat{\mathbb{P}}$ are upper Bernoulli and ϕ-invariant. Then,

$$
E p:=\lim _{t \rightarrow \infty} \frac{1}{t} S\left(\mathbb{P}_{t} \mid \widehat{\mathbb{P}}_{t}\right)
$$

exists. Assume moreover that \mathbb{P} and $\widehat{\mathbb{P}}$ are ergodic. Then,

$$
\sigma:=\lim _{t \rightarrow \infty} \sigma_{t}=\mathbb{E}(\sigma)=E p . \quad \mathbb{P} \text { - almost surely. }
$$

Moreover,

$$
E p=0 \Leftrightarrow \mathbb{P}=\widehat{\mathbb{P}} \quad \text { and } \quad E p>0 \Leftrightarrow \mathbb{P}(\sigma>0)=1 \text { and } \widehat{\mathbb{P}}(\sigma>0)=0 .
$$

Relative entropy convergence

The asymptotic relative entropy random variable distinguishes between \mathbb{P} and $\widehat{\mathbb{P}}$. Given an observed sequence of measurement $\omega \in \Omega$,

- Either $\sigma \geq 0$ and \mathcal{J} is the instrument used (i.e. the movie is played forward),
- Or $\sigma \leq 0$ and $\widehat{\mathcal{J}}$ is the instrument used (i.e. the movie is played backward).

Remark

For time arrow hypothesis testing,

$$
E p=0 \sim \text { Detailed balance condition. }
$$

With Detailed balance condition:

$$
\Phi \equiv \widehat{\Phi}
$$

(\leftarrow) can be proved for a family of appropriate unraveling.
(\rightarrow) partial from the theory of finitely correlated states [Fannes, Nachtergaele, Werner CMP '92].

Entropy production

$$
\sigma_{t} \simeq \frac{1}{t}\left(\frac{1}{T_{h}} \Delta Q_{h}+\frac{1}{T_{c}} \Delta Q_{c}\right) .
$$

Since $J_{Q}:=\lim _{t \rightarrow \infty} \frac{1}{t} \Delta Q_{c}=\lim _{t \rightarrow \infty}-\frac{1}{t} \Delta Q_{h}$ with probability 1 ,

$$
E p=\frac{T_{h}-T_{c}}{T_{c} T_{h}} J_{Q}>0 \Rightarrow \operatorname{sign}\left(J_{Q}\right)=\operatorname{sign}\left(T_{h}-T_{c}\right) .
$$

Since $J_{Q}=\Delta E \frac{1}{2}(\mathbb{P}(c ;+\Delta E)-\mathbb{P}(c ;-\Delta E))$,

$$
E p=0 \Leftrightarrow T_{c}=T_{h} .
$$

Remark: This is not true for full dipolar interaction where $E p>0$ even if $T_{h} \equiv T_{c}$.

Beyond the law of large numbers: Rényi relative entropy.

Cumulant generating function of $-t \sigma_{t}$:

$$
e_{t}(\alpha):=\log \sum_{\omega_{t} \in \Omega_{t}} \mathbb{P}_{t}\left(\omega_{t}\right)^{(1-\alpha)} \widehat{\mathbb{P}}_{t}\left(\omega_{t}\right)^{\alpha}=S_{\alpha}\left(\mathbb{P}_{t} \mid \widehat{\mathbb{P}}_{t}\right)
$$

Remark: For the time arrow, since $\sum_{\omega_{t}} f\left(\omega_{t}\right)=\sum_{\hat{\omega}_{t}} f\left(\hat{\omega}_{t}\right)$,

$$
e_{t}(\alpha)=e_{t}(1-\alpha) .
$$

Hence, the transient fluctuation relation holds: $\frac{\mathbb{P}_{t}\left(\sigma_{t}=s\right)}{\mathbb{P}_{t}\left(\sigma_{t}=-s\right)}=e^{t s}$.
Theorem (B.,Jaksic, Pautrat, Pillet '16)
Assume \mathbb{P} and $\widehat{\mathbb{P}}$ are upper Bernoulli and ergodic. Then, $\forall \alpha \in[0,1]$,

$$
e(\alpha):=\lim _{t \rightarrow \infty} \frac{1}{t} e_{t}(\alpha)
$$

exists, is continuous, convex, satisfies $e(0)=e(1)=0$ and

$$
\left.\partial_{\alpha}^{+} e(\alpha)\right|_{\alpha=0}=-E p .
$$

For the time arrow hypothesis testing: $e(\alpha)=e(1-\alpha)$.

Rényi relative entropy as an entropic pressure

Rényi relative entropy can be obtained through a variational principle.

$$
\frac{1}{t} e_{t}(\alpha)=\frac{1}{t} \max _{\mathbb{Q}_{t}}\left(\mathbb{E}_{\mathbb{Q}_{t}}\left(\log \mathbb{P}_{t}\right)-\alpha \mathbb{E}_{\mathbb{Q}_{t}}\left(\sigma_{t}\right)+S\left(\mathbb{Q}_{t}\right)\right)
$$

Thermodynamic equivalent: Canonical Gibbs distribution maximises the free energy.

$$
F_{L} \sim e_{t}(\alpha), \quad S_{L} \sim S\left(\mathbb{Q}_{t}\right) \quad \text { and } \quad \beta E_{L} \sim \alpha \mathbb{E}_{\mathbb{Q}_{t}}\left(\sigma_{t}\right)-\mathbb{E}_{\mathbb{Q}_{t}}\left(\log \mathbb{P}_{t}\right)
$$

Since $-E_{t+s} \leq-E_{t}-E_{s}-C \Rightarrow$ sub additive thermodynamic formalism ${ }^{1} \Rightarrow$ regularity of $e(\alpha)$.

Let \mathcal{P}_{ϕ} be the set of ϕ invariant probability measures over Ω.
For all $\alpha \in[0,1]$ there exists $\mathbb{Q} \mapsto f_{\alpha}(\mathbb{Q})$ affine and upper semicontinuous such that:

$$
e(\alpha)=\sup _{\mathbb{Q} \in \mathcal{P}_{\phi}} f_{\alpha}(\mathbb{Q})
$$

Let $\mathcal{P}_{\text {eq }}(\alpha)$ be the set of probability measures for which the supremum is reached. If $\mathcal{P}_{\text {eq }}(\alpha)$ is a singleton, then $\alpha \mapsto e(\alpha)$ is differentiable on $] 0,1[$.

Differentiability of $e(\alpha)$

Assumption (C): (Weaker than lower Bernoulli) There exists τ and $C^{\prime}>0$ such that for all $s, t, \omega_{t} \in \Omega_{t}, \nu_{s} \in \Omega_{s}$, there exists $\xi_{u} \in \Omega_{u}$ with $u \leq \tau$ such that

$$
\mathbb{P}\left(\omega_{t}, \xi_{u}, \nu_{s}\right) \widehat{\mathbb{P}}\left(\omega_{t}, \xi_{u}, \nu_{s}\right) \geq C^{\prime} \mathbb{P}\left(\omega_{t}\right) \mathbb{P}\left(\nu_{s}\right) \widehat{\mathbb{P}}\left(\omega_{t}\right) \widehat{\mathbb{P}}\left(\nu_{s}\right) .
$$

Theorem (B., Jaksic, Pautrat, Pillet, '16)
If Assumption (C) holds, $\alpha \mapsto e(\alpha)$ is differentiable on $] 0,1[$.

Assumption (D): (Quasi Bernoulli) There exists $C>0$ such that for all s, t, $\omega_{t} \in \Omega_{t}, \nu_{s} \in \Omega_{s}$,

$$
C^{-1} \mathbb{P}\left(\omega_{t}\right) \mathbb{P}\left(\nu_{s}\right) \leq \mathbb{P}\left(\omega_{t}, \nu_{s}\right) \leq \mathbb{P}\left(\omega_{t}\right) \mathbb{P}\left(\nu_{s}\right)
$$

Theorem (B., Jaksic, Pautrat, Pillet '16)
If both \mathbb{P} and $\widehat{\mathbb{P}}$ verify Assumption (D), then, $\alpha \mapsto e(\alpha)$ exists and is differentiable on \mathbb{R}.

Sufficient condition for Assumption (C)

Proposition (B., Jaksic, Pautrat, Pillet '16)

Fix $(\mathcal{J}, \widehat{\mathcal{J}})$ two instruments on $M_{d}(\mathbb{C})$. Let $\mathcal{O} \subset M_{d^{2}}(\mathbb{C})$ be the smallest C^{*}-algebra containing the cluster points of the sequences

$$
\left(\frac{\Phi_{\omega_{t}} \otimes \widehat{\Phi}_{\omega_{t}}\left(I_{d^{2}}\right)}{\operatorname{tr}\left(\Phi_{\omega_{t}} \otimes \widehat{\Phi}_{\omega_{t}}\left(I_{d^{2}}\right)\right)}\right)_{t \in \mathbb{N}} \quad \text { and } \quad\left(\frac{\Phi_{\omega_{t}}^{*} \otimes \widehat{\Phi}_{\omega_{t}}^{*}\left(I_{d^{2}}\right)}{\operatorname{tr}\left(\Phi_{\omega_{t}}^{*} \otimes \widehat{\Phi}_{\omega_{t}}^{*}\left(I_{d^{2}}\right)\right)}\right)_{t \in \mathbb{N}}
$$

for any sequence of words $\left(\omega_{t}\right)_{t \in \mathbb{N}} \subset \Omega_{\mathrm{fin}}$ with $\Phi_{\omega}=\Phi_{\omega_{1}} \circ \cdots \circ \Phi_{\omega_{|a|}}$.
If the CP map,

$$
\Psi:=\sum_{k=1}^{\ell} \Phi_{k} \otimes \widehat{\Phi}_{k}
$$

is irreducible on \mathcal{O}, then Assumption (C) holds.

Rényi entropy and heat cumulant generating function.

$e(\alpha)$ is the limit cumulant generating function of

$$
-\sigma_{t} \simeq \frac{1}{t} \frac{T_{c}-T_{h}}{T_{c} T_{h}} \Delta Q_{c} .
$$

It can be explicitly computed using spectral techniques on CP maps[van Horssen, Guta JMP '15].

$e(\alpha)$ for different $T_{h}-T_{c}$

Fluctuation relation for time arrow testing

The entropy production random variable verifies a local large deviation principle.

$$
I(s):=\sup _{\alpha \in \mathbb{R}}(\alpha s-\bar{e}(\alpha))
$$

From the symmetry $e(\alpha)=e(1-\alpha)$, this rate function is such that

$$
I(-s)-I(s)=s \quad \text { and } \quad I(E p)=0
$$

Theorem
If Assumption (C) holds, for any $s \in]-E p, E p[$,

$$
\begin{aligned}
& \lim _{\epsilon \downarrow 0} \lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}_{t}\left(\left|\sigma_{t}-s\right|<\epsilon\right)=-I(s) \\
& \lim _{\epsilon \downarrow 0} \lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}_{t}\left(\left|\sigma_{t}+s\right|<\epsilon\right)=-I(-s)=-(I(s)+s)
\end{aligned}
$$

If Assumption (D) holds, then both previous limit hold for any $s \in \mathbb{R}$.

Hypothesis testing

H_{0} The observed quantum measurements are described by (\mathcal{J}, ρ).
H_{1} The observed quantum measurements are described by $(\widehat{\mathcal{J}}, \widehat{\rho})$.
For each time t let \mathcal{T}_{t} be an event whose realization implies we decide " H_{0} is true".

$$
\text { Example: } \mathcal{I}_{t}=\left\{\omega_{t} \in \Omega_{t} \mid \sigma_{t}>0\right\} .
$$

Then,

- $\mathbb{P}_{t}\left(\mathcal{T}_{t}^{c}\right)$ is the probability to reject H_{0} when it is true (Type I error).
- $\widehat{\mathbb{P}}_{t}\left(\mathcal{T}_{t}\right)$ is the probability to accept H_{0} when H_{1} is true (Type II error).

Stein's error exponents

Stein error exponent for $\epsilon \in] 0,1[$:

$$
s_{t}(\epsilon):=\min _{\mathcal{T}_{t}}\left\{\widehat{\mathbb{P}}_{t}\left(\mathcal{T}_{t}\right) \mid \mathcal{T}_{t} \subset \Omega_{t} \text { and } \mathbb{P}_{t}\left(\mathcal{T}_{t}^{c}\right) \leq \epsilon\right\}
$$

" $s_{t}(\epsilon)$ is the minimal error of type II while we control the error of type I."
Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)
Assume \mathbb{P} and $\widehat{\mathbb{P}}$ are upper Bernoulli and ergodic. Then, for all $\epsilon \in] 0,1[$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log s_{t}(\epsilon)=-E p
$$

The entropy production corresponds to the exponential decreasing rate of the error of type II given any control on the error of type I.

Hoeffding's error exponents

These exponents are similar to Stein's one, with a tighter control on the type I error.

$$
\begin{aligned}
\bar{h}(s) & :=\inf _{\mathcal{T}_{t}}\left\{\limsup _{t \rightarrow \infty} \frac{1}{t} \log \widehat{\mathbb{P}}_{t}\left(\mathcal{T}_{t}\right) \left\lvert\, \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}_{t}\left(\mathcal{T}_{t}^{c}\right)<-s\right.\right\} \\
\underline{h}(s) & :=\inf _{\mathcal{T}_{t}}\left\{\liminf _{t \rightarrow \infty} \frac{1}{t} \log \widehat{\mathbb{P}}_{t}\left(\mathcal{T}_{t}\right) \left\lvert\, \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}_{t}\left(\mathcal{T}_{t}^{c}\right)<-s\right.\right\} \\
h(s) & :=\inf _{\mathcal{T}_{t}}\left\{\lim _{t \rightarrow \infty} \frac{1}{t} \log \widehat{\mathbb{P}}_{t}\left(\mathcal{T}_{t}\right) \left\lvert\, \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}_{t}\left(\mathcal{T}_{t}^{c}\right)<-s\right.\right\} .
\end{aligned}
$$

For $s \geq 0$, set

$$
\Psi(s)=-\sup _{\alpha \in[0,1[} \frac{-s \alpha-e(\alpha)}{1-\alpha}
$$

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)
Assume \mathbb{P} and $\widehat{\mathbb{P}}$ are upper Bernoulli and ergodic, and that Assumption (C) holds. Then for $s \geq 0$,

$$
\underline{h}(s)=\bar{h}(s)=h(s)=\Psi(s) .
$$

Chernoff's exponents

Assume a priori equiprobability for both hypothesis H_{0} and H_{1}. Take the test,

$$
\underline{\mathcal{I}}_{t}=\left\{\omega_{t} \in \Omega_{t} \mid \sigma_{t} \geq 0\right\}
$$

Then, the total probability of error is:

$$
c_{t}:=\frac{1}{2} \mathbb{P}_{t}\left(\underline{\mathcal{T}}_{t}^{c}\right)+\frac{1}{2} \widehat{\mathbb{P}}_{t}\left(\underline{\mathcal{I}}_{t}\right)=\frac{1}{2}\left(1-\left\|\mathbb{P}_{t}-\widehat{\mathbb{P}}_{t}\right\|_{T V}\right) .
$$

Chernoff exponents are:

$$
\bar{c}:=\limsup _{t \rightarrow \infty} \frac{1}{t} \log c_{t} \quad \text { and } \quad \underline{c}:=\liminf _{t \rightarrow \infty} \frac{1}{t} \log c_{t} .
$$

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)
Assume \mathbb{P} and $\widehat{\mathbb{P}}$ are upper Bernoulli and ergodic. Let $\alpha_{*}:=\operatorname{argmin}_{\alpha \in[0,1]} e(\alpha)$.
Then,

- $\bar{c} \leq e\left(\alpha_{*}\right) \quad$ and $\quad \underline{c} \geq e\left(\alpha_{*}\right)-\frac{1}{2} \partial^{+} e\left(\alpha_{*}\right)$.

Particularly Ep>0 $\Rightarrow \bar{c}<0$.

- If Assumption (C) holds, $\bar{c}=\underline{c}=e\left(\alpha_{*}\right)$.

Remark: For time arrow hypothesis testing, $\alpha_{*}=\frac{1}{2}$.

$e(\alpha)$ and error exponents

A non trivial example: The Keep-Switch instrument

Consider the two state Markov process with stochastic matrix $P:=\left(\begin{array}{ll}q_{1} & p_{1} \\ p_{2} & q_{2}\end{array}\right)$. The two states are not accessible. One only knows if the particle following the Markov process stayed on its site (K) or switches site (S). The probability of sequences of keep and flip is given by the following instrument:
Let $\mathcal{J}:=\left\{\Phi_{K}, \Phi_{S}\right\}$ with,

$$
\Phi_{K}\left(\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\right)=\left(\begin{array}{cc}
q_{1} x & 0 \\
0 & q_{2} y
\end{array}\right), \quad \Phi_{S}\left(\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right)\right)=\left(\begin{array}{cc}
y p_{1} & 0 \\
0 & x p_{2}
\end{array}\right) .
$$

We do not know if our instrument gives a signal when the particle stays in its site or switches. The instrument $\widehat{\mathcal{J}}$ is $\widehat{\mathcal{J}}=\left\{\widehat{\Phi}_{K}=\Phi_{S}, \widehat{\Phi}_{S}=\Phi_{K}\right\}$.

We test the alternative $(\mathcal{J}, \widehat{\mathcal{J}})$.

A non trivial example: The Keep-Switch instrument

Proposition (B., Jaksic, Pautrat, Pillet '17)

1. The Keep-Switch hypothesis testing verifies our assumptions and particularly Assumption (C).
2. \mathbb{P} is not quasi Bernoulli (does not satisfy (D)).
3. The limit $\alpha \mapsto e(\alpha)$ of $\alpha \mapsto e_{t}(\alpha)$ exists and is differentiable on \mathbb{R}. It is real analytic on $\mathbb{R} \backslash\{0,1\}$ but non twice differentiable in 0 and 1.
4. The CLT does not hold for the entropy production. Instead,

$$
\frac{\sigma_{t}-t E p}{\sqrt{t}} \underset{t \rightarrow \infty}{\stackrel{w}{\rightarrow}} X+|Z|
$$

with X and Z two centered Gaussian random variables.

Open questions

- Algebraic condition equivalent to Assumption (C),
- Φ irreducible and $\mathbb{P}_{t} \sim \widehat{\mathbb{P}}_{t} \forall t$ such that $\alpha \mapsto e(\alpha)$ not differentiable on $] 0,1[$,
- Irregularities outside]0, 1 [and lower order Stein's exponents,
- Continuous time version,
- Entangled probes,
- Time reversal of the underlying Markov chain on the system.

