Tomography of state and parameters in open quantum systems

Pierre Six CAS - MINES ParisTech QUANTIC Team - INRIA

works as a PhD student of Pierre Rouchon

Wednesday, the 25th of January, 2017

Subject of this talk

Traditionally, quantum state tomography is based on **single projective measurements** [Paris et Řeháček, 2004] Several techniques exist, including:

• MaxLike principle [Lvovsky et Raymer, RMP 2009]

$$\hat{
ho} = rg\max_{
ho} \left(\prod_{
u=1}^{n} \operatorname{Tr}(
ho \Pi_{
u})^{m_{
u}}
ight)$$

• *MaxEnt principle* [Bužek, Lecture Notes on Physics **649**, 2004]

 $\hat{
ho}$ most entropic state verifying ${
m Tr}\left(\hat{
ho}{\Pi}_{
u}
ight)=\pi_{
u},\,orall
u\leq n$

• Compressed Sensing [Gross et al., PRL 2010]

 $\hat{
ho}$ minimizing $||\hat{
ho}||_{\mathsf{tr}}$ and verifying $\mathsf{Tr}\left(\hat{
ho}\mathsf{\Pi}_{
u}
ight)=\pi_{
u},\,orall
u\leq n$

Subject of this talk

Previous techniques don't take into account the **dynamics** of the system

Goal of my thesis: state and parameter quantum tomography along some discrete-time and diffusive quantum trajectories in finite-dimensionnal systems

Contributions of this talk

Based on quantum trajectories

- for diffusive systems, a discretization scheme preserving the **positivity** of state
- methods for state quantum tomography using MaxLike principle
- introduction to process quantum tomography via **particle filters**, and a result of **stability** of this estimation w.r.t. initial state
- validations using outcome trajectories produced by supraconducting qubit

Discretization scheme for diffusive systems

Discrete-time systems: a brief reminder

In the following, ρ evolves in a Hilbert space $\mathcal H$ of dimension d

Definition (Kraus applications, Nielsen and Chuang, 2000)

A discrete-time measurement on \mathcal{H} is described by the **complete** set of partial Kraus applications $(\mathbf{K}_y)_{y \le r}$, verifying:

$$r \leq d^2$$

 $\forall y \leq r, \exists I_y$ finite and $(M_{yl})_{l \leq I_y}$ such that

$$orall
ho \in \mathcal{L}(\mathcal{H}), \quad \mathbf{K}_{y}(
ho) = \sum_{l=1}^{l_{y}} M_{yl}
ho M_{yl}^{\dagger}$$

The set $(\mathbf{K}_{y})_{y \leq r}$ is complete as:

$$\sum_{y=1}^{r}\sum_{l=1}^{l_{y}}M_{yl}^{\dagger}M_{yl}=I_{\mathcal{H}}$$

Discrete-time systems: a brief reminder

• Denoting ρ_{-} and ρ_{+} the states before and after the measurement, and y its outcome:

$$\rho_{+} = \frac{\boldsymbol{K}_{y}(\rho_{-})}{\operatorname{Tr}(\boldsymbol{K}_{y}(\rho_{-}))}$$
$$\mathbb{P}(y = \tilde{y}|\rho_{-} = \tilde{\rho}) = \operatorname{Tr}(\boldsymbol{K}_{\tilde{y}}(\tilde{\rho}))$$

 Measurement imperfections: measurement of 1 ≤ z ≤ r_z instead of y

$$\rho_{+} = \frac{\sum_{\tilde{y}=1}^{r} \eta_{z\tilde{y}} \boldsymbol{K}_{\tilde{y}}(\rho_{-})}{\operatorname{Tr}\left(\sum_{\tilde{y}=1}^{r} \eta_{z\tilde{y}} \boldsymbol{K}_{\tilde{y}}(\rho_{-})\right)}$$
$$\mathbb{P}\left(z = \tilde{z} | \rho_{-} = \tilde{\rho}\right) = \sum_{\tilde{y}=1}^{r} \eta_{\tilde{z}\tilde{y}} \operatorname{Tr}\left(\boldsymbol{K}_{\tilde{y}}\left(\tilde{\rho}\right)\right)$$

where $\eta_{\tilde{z}\tilde{y}} = \mathbb{P}(z = \tilde{z}|y = \tilde{y}).$

Discrete-time systems: a brief reminder

Introducing $\eta_{\tilde{z}\tilde{y}}$ and unitary evolutions in $\boldsymbol{K}_{\tilde{y}}$

Definition (Belavkin filter)

Denote $t_0 < t_1 < t_2 < \ldots < t_T$, with t_0 the initial time and $(t_k)_{k\geq 1}$ the instants during which a **discrete-time measurement occurs** on the system. We associate to each of them a complete Kraus set $(\mathbf{K}_{k,y})_{y < r_k}$.

Then, the state evolves from ρ_0 according to the Belavkin filter:

$$\rho_{k} = \frac{\boldsymbol{K}_{k,y_{k}}(\rho_{k-1})}{\operatorname{Tr}(\boldsymbol{K}_{k,y_{k}}(\rho_{k-1}))}$$
$$\mathbb{P}(y_{k} = \tilde{y}|\rho_{k-1} = \tilde{\rho}) = \operatorname{Tr}(\boldsymbol{K}_{k,\tilde{y}}(\tilde{\rho}))$$

where $\rho_k = \rho(t_k)$.

We recall that $\boldsymbol{K}_{y}(\rho) = \sum_{l=1}^{l_{y}} M_{yl} \rho M_{yl}^{\dagger}$.

Evolution of diffusive systems

Stochastic Master Equation [Barchielli et Gregoratti, 2009]

Evolution of state $\rho,$ with respect to diffusive measurement processes $(\mathrm{d} y_t^\nu)_{\nu\leq n}$

$$d\rho_{t} = \left[-\frac{i}{\hbar}\left[H_{t},\rho_{t}\right] + \sum_{\nu=1}^{n} \mathcal{D}_{\nu}\left(\rho_{t}\right)\right] dt + \sum_{\nu=1}^{n} \sqrt{\eta_{\nu}} \left[\mathcal{M}_{\nu}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{\nu}\left(\rho_{t}\right)\right)\rho_{t}\right] dW_{t}^{\nu}$$

and the measurement processes dy_t^{ν} :

$$\mathrm{d}y_{t}^{\nu} = \sqrt{\eta_{\nu}} \mathrm{Tr}\left(\mathcal{M}_{\nu}\left(\rho_{t}\right)\right) \mathrm{d}t + \mathrm{d}W_{t}^{\nu}$$

Model **experimentally validated** on a superconducting qubit [Campagne-Ibarcq, PRX **6**]

Evolution of diffusive systems

$$d\rho_{t} = \left[-\frac{i}{\hbar} \left[H_{t}, \rho_{t} \right] + \sum_{\nu=1}^{n} \mathcal{D}_{\nu} \left(\rho_{t} \right) \right] dt + \sum_{\nu=1}^{n} \sqrt{\eta_{\nu}} \left[\mathcal{M}_{\nu} \left(\rho_{t} \right) - \operatorname{Tr} \left(\mathcal{M}_{\nu} \left(\rho_{t} \right) \right) \rho_{t} \right] dW_{t}^{\nu} dy_{t}^{\nu} = \sqrt{\eta_{\nu}} \operatorname{Tr} \left(\mathcal{M}_{\nu} \left(\rho_{t} \right) \right) dt + dW_{t}^{\nu}$$

- ρ_t operator of the finite-dimension Hilbert space \mathcal{H} , density matrix, i.e. $\operatorname{Tr}(\rho_t) = 1$, $\rho_t = \rho_t^{\dagger}$ and $\rho_t \geq 0$
- *H_t* Hamiltonien operator, zero-trace and Hermitian
- \mathcal{D}_{ν} Lindblad superoperator:

$$\mathcal{D}_{\nu}\left(
ho
ight)=L_{
u}
ho L_{
u}^{\dagger}-\left(L_{
u}^{\dagger}L_{
u}
ho+
ho L_{
u}^{\dagger}L_{
u}
ight)/2$$

• \mathcal{M}_{ν} measurement superoperator:

$$\mathcal{M}_{
u}\left(
ho
ight)=L_{
u}
ho+
ho L_{
u}^{\dagger}$$

Evolution of diffusive systems

$$d\rho_{t} = \left[-\frac{i}{\hbar} \left[H_{t}, \rho_{t}\right] + \sum_{\nu=1}^{n} \mathcal{D}_{\nu}\left(\rho_{t}\right)\right] dt + \sum_{\nu=1}^{n} \sqrt{\eta_{\nu}} \left[\mathcal{M}_{\nu}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{\nu}\left(\rho_{t}\right)\right)\rho_{t}\right] dW_{t}^{\nu} dy_{t}^{\nu} = \sqrt{\eta_{\nu}} \operatorname{Tr}\left(\mathcal{M}_{\nu}\left(\rho_{t}\right)\right) dt + dW_{t}^{\nu}$$

 $(dW_t^{\nu})_{\nu}$ independent **Wiener processes** (independent and stationary increments, continuous path), verifying:

$$\mathrm{d}W_t^{\nu} \sim N\left(0,\sqrt{\mathrm{d}t}\right), \quad \nu \leq n$$

 $\eta_{\nu} \in [0; 1]$: **detection efficiency** of measurement ν

The Stochastic Master Equation is not linear.

Definition (Discretization scheme)

We provide a discretization scheme of the SME :

$$\rho_{t} = \mathbb{E}\left(\rho_{t} \middle| \rho_{t-\Delta_{t}}, \Delta \mathbf{y}_{t}\right) = \frac{\mathbf{K}_{t,\Delta \mathbf{y}_{t}}\left(\rho_{t-\Delta_{t}}\right)}{\mathsf{Tr}\left(\mathbf{K}_{t,\Delta \mathbf{y}_{t}}\left(\rho_{t-\Delta_{t}}\right)\right)}$$

- Δ_t: sampling time of diffusive signals
- $\Delta y_t = (\Delta y_t^{\nu})_{\nu \le n}$ and $\Delta y_t^{\nu} = \int_{s=t-\Delta_t}^{s=t} \mathrm{d} y_s^{\nu}$ the sampled measurements
- $\rho \mapsto K_{t,\Delta y_t}(\rho)$ linear application with Kraus application structure:

$$\boldsymbol{K}_{t,\Delta \mathbf{y}}(\rho) = (N_{t,\Delta \mathbf{y}})\rho(N_{t,\Delta \mathbf{y}})^{\dagger} + \sum_{\nu=1}^{n} G_{\nu}\rho G_{\nu}^{\dagger}\Delta_{t}$$

This scheme has two advantages:

- it preserves the **positivity of the state** along a measurement trajectory
- it is associated with a probability law:

$$\begin{split} \mathbb{P}\Big(\forall \nu \leq n, \Delta y^{\nu} \leq \Delta y_{t}^{\nu} \leq \Delta y^{\nu} + \mathrm{d} y^{\nu} \Big| \rho_{t-\Delta_{t}} = \rho\Big) = \\ \mathsf{Tr}\left(\boldsymbol{K}_{t,\Delta \mathbf{y}}\left(\rho\right)\right) \times \left(\prod_{\nu=1}^{n} \mathrm{d} y^{\nu}\right) \end{split}$$

Expression of the scheme

The discretized Kraus application $K_{t,\Delta y}$ writes, for any ρ and Δy :

$$\boldsymbol{K}_{t,\Delta \mathbf{y}}(\rho) = \frac{\exp\left(-\frac{||\Delta \mathbf{y}||^2}{2}\right)}{(2\pi\Delta t)^{\frac{N}{2}}} \tilde{\boldsymbol{K}}_{t,\Delta \mathbf{y}}(\boldsymbol{\Sigma}_t \rho \boldsymbol{\Sigma}_t^{\dagger})$$

where:

•
$$\tilde{\mathbf{K}}_{t,\Delta\mathbf{y}}(\rho) = (M_{t,\Delta\mathbf{y}})\rho(M_{t,\Delta\mathbf{y}})^{\dagger} + \sum_{\nu=1}^{n}(1-\eta_{\nu})L_{\nu}\rho L_{\nu}^{\dagger}\Delta t$$

• $M_{t,\Delta\mathbf{y}} = I_{\mathcal{H}} + \sum_{\nu=1}^{n}\eta_{\nu}L_{\nu}\Delta y^{\nu} - C_{t}\Delta t$
• $C_{t} = \frac{i}{\hbar}H_{t} + \sum_{\nu=1}^{n}\frac{L_{\nu}^{\dagger}L_{\nu}}{2}$
• $\Sigma_{t} = \left[I_{\mathcal{H}} + C_{t}^{\dagger}C_{t}(\Delta t)^{2}\right]^{-\frac{1}{2}}$

Thanks to Σ_t , $\int_{\mathbb{R}^n} \text{Tr}(\boldsymbol{K}_{t,\Delta \mathbf{y}}(\rho)) d\Delta y^1 \dots d\Delta y^n = 1$ for any ρ and a strictly positive Δt

Theorem (Convergence in distribution of the discretization scheme)

The discretization scheme defined by:

$$\rho_{t} = \frac{\boldsymbol{K}_{t,\Delta \mathbf{y}_{t}}(\rho_{t-\Delta_{t}})}{Tr(\boldsymbol{K}_{t,\Delta \mathbf{y}_{t}}(\rho_{t-\Delta_{t}}))},$$
$$d\mathbb{P}\left(\Delta \mathbf{y}_{t} = \Delta \mathbf{y} \middle| \rho_{t-\Delta_{t}} = \rho\right) = Tr(\boldsymbol{K}_{t,\Delta \mathbf{y}}(\rho))$$

converges in distribution towards the SME, for Δt tending to the infinitesimal dt.

Sketch of proof: we show two assumptions

same first-order generators for both equations: ∀f scalar
 C²-function and ∀ρ density matrix, the expectancy of

$$\frac{f(\rho_t) - f(\rho_{t-\Delta t})}{\Delta t} \text{ over } \Delta \mathbf{y}_t, \text{ assuming } \rho_{t-\Delta t} = \rho$$

converges when $\Delta t
ightarrow \mathrm{d} t$ to the value obtained with SME.

• tightness hypothesis

Discretization scheme: first-order generators Concerning the SME, recalling that:

$$\mathrm{d}\rho_t = \mu(\rho_t, t)\mathrm{d}t + \sum_{\nu=1}^n \sigma_\nu(\rho_t, t)\mathrm{d}W_t^\nu$$

the first-order generator is computed using the **Itō differential** calculus rules:

$$Af(\rho) = \mathbb{E}_{\mathrm{d}\mathbf{y}_t} \left(\frac{f(\rho_t) - f(\rho_{t-\mathrm{d}t} = \rho)}{\mathrm{d}t} \right) = \nabla f|_{\rho} \cdot \mu(\rho_t, t) + \frac{1}{2} \nabla^2 f|_{\rho} \cdot \left(\sum_{\nu=1}^n \left[\sigma_{\nu}(\rho, t), \sigma_{\nu}(\rho, t) \right] \right)$$

Discretization scheme: first-order generators

Concerning the discretization scheme, we simply use **expansion series**:

$$Bf(\rho) = \lim_{\Delta t \to dt} \mathbb{E}_{\Delta \mathbf{y}} \left(\frac{f(\rho_t) - f(\rho_{t-\Delta t} = \rho)}{\Delta t} \right) = \lim_{\Delta t \to dt} \mathbb{E}_{\Delta \mathbf{y}} \left(\frac{f\left(\frac{\kappa_{t,\Delta \mathbf{y}}(\rho)}{\mathsf{Tr}(\kappa_{t,\Delta \mathbf{y}}(\rho))}\right) - f(\rho_{t-\Delta t} = \rho)}{\Delta t} \right)$$

- the term $\exp\left(-\frac{||\Delta \mathbf{y}||^2}{4}\right)/(2\pi\Delta t)^{\frac{N}{4}}$ vanishes
- terms of the order Δy_t^{ν} , $(\Delta y_t^{\nu})^2$ and dt: we consider $\tilde{K}_{t,\Delta y}(\rho)$ whose additive structure fits well with expansion series

Quantum state tomography using MaxLike principle

MaxLike principle

Definition (Maximum Likelihood)

Using realisations X_1,\ldots,X_N successively obtained according to the probability law

$$X \mapsto f(X \mid \theta = \overline{\theta}),$$

the MaxLike estimation of $\overline{\theta}$ consists in choosing $\hat{\theta}_{ML}$ which maximizes on the set Θ the **conditional probabilities** of X_i :

$$\hat{ heta}_{\mathcal{ML}} = rg\max_{ heta \in \Theta} f\left(X_1, \dots, X_N | heta
ight)$$

$$= rg\max_{ heta \in \Theta} \prod_{n=1}^N f\left(X_n | heta
ight)$$

f is called **likelihood function**.

Discretization scheme for diffusive systems Quantum state tomography using MaxLike principle Quantum process tomography using

Consistency of Maximum Likelihood

The MaxLike estimation can be biased :

$$\hat{ heta}_{ extsf{ML}}(extsf{N}) = \mathbb{E}_{X_1,...,X_N}\left(\hat{ heta}_{ extsf{ML}}\left(X_1,\ldots,X_N
ight)
ight)
eq \overline{ heta},$$

but, if Θ is a compact space, $\overline{\theta} \in int(\Theta)$ (among other properties), this estimation is **consistent** :

$$\lim_{N
ightarrow+\infty}\hat{ heta}_{\scriptscriptstyle M\!L}(N)=\overline{ heta}$$
 in probability

Definition (Estimation variance)

Estimation variance $\sigma_{M}^{2}(N)$ of Maximum Likelihood is defined by:

$$\sigma_{ML}^{2}(N) = \mathbb{E}_{X_{1},...,X_{N}} \left(\left(\hat{\theta}_{ML} \left(X_{1},...,X_{N} \right) - \hat{\theta}_{ML}(N) \right) \cdot \left(\hat{\theta}_{ML} \left(X_{1},...,X_{N} \right) - \hat{\theta}_{ML}(N) \right)^{T} \right)$$

Maximum Likelihood properties

Cramér-Rao bound

• For any **unbiased** estimator C, if the likelihood f is a C^2 -function w.r.t. θ , and \mathbb{E}_X are $\partial^2/\partial\theta^2$ invertible :

$$\sigma_{\mathcal{C}}^{2}(N) \geq \frac{\left(-\mathbb{E}_{X}\left(\frac{\partial^{2}}{\partial\theta^{2}}\log\left(f\left(X\left|\overline{\theta}\right)\right)\right)\right)^{-1}}{N}$$

This bound **does not depend** on the estimator C.

• Maximum Likelihood is asymptotically efficient :

$$\sigma_{ML}^{2}(N) \sim_{N \to +\infty} \frac{\left(-\mathbb{E}_{X}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log\left(f\left(X\middle|\overline{\theta}\right)\right)\right)\right)^{-1}}{N} \quad \text{in prob.}$$

when \mathbb{E}_{X} and $\partial^{3}/\partial\theta^{3}$ are locally invertible around $\overline{\theta}$.

Likelihood function of measurement trajectories **Likelihood** of a measurement trajectory (y_1, \ldots, y_T) , supposing that $\rho_0 = \hat{\rho}$?

Bayes' law gives:

$$\mathbb{P}\left(\left(y_{k}\right)_{k\leq T}\left|\hat{\rho}\right)=\prod_{k=1}^{T}\mathbb{P}\left(y_{k}\left|\hat{\rho},\left(y_{s}\right)_{s\leq k-1}\right)\right)$$

• Approximated quantum filter initialized with $\hat{\rho}$:

$$\hat{\rho}_{0} = \hat{\rho}, \quad \hat{\rho}_{k} = \frac{\boldsymbol{K}_{y_{k}}(\hat{\rho}_{k-1})}{\operatorname{Tr}(\boldsymbol{K}_{y_{k}}(\hat{\rho}_{k-1}))},$$
$$\mathbb{P}\left(y_{k} \middle| \hat{\rho}, (y_{s})_{s \leq k-1}\right) = \operatorname{Tr}(\boldsymbol{K}_{y_{k}}(\hat{\rho}_{k-1}))$$

• Linearity of Kraus applications

Likelihood function of measurement trajectories Likelihood of a measurement trajectory (y_1, \ldots, y_T) , supposing that $\rho_0 = \hat{\rho}$:

$$\mathbb{P}\left(\left(y_{k}\right)_{k\leq T}\left|\hat{\rho}\right)=\mathsf{Tr}\left(\boldsymbol{K}_{y_{T}}\circ\ldots\circ\boldsymbol{K}_{y_{1}}\left(\hat{\rho}\right)\right)$$

Adjoint Kraus applications denoted K^{*} [Quantum Smoothing -Tsang 2009, Past Quantum States - Gammelmark et al., 2013] :

$$\forall$$
 operators A and B, $\operatorname{Tr}(A\boldsymbol{K}_{y}(B)) = \operatorname{Tr}(\boldsymbol{K}_{y}^{*}(A)B)$

Thus, the **likelihood of a trajectory** is given by:

$$\mathbb{P}\left((y_k)_{k\leq T} \left| \hat{\rho} \right) = \mathsf{Tr}\left(\boldsymbol{K}_{y_1}^* \circ \ldots \circ \boldsymbol{K}_{y_T}^* \left(l \right) \hat{\rho} \right)$$

Likelihood function of measurement trajectories: conclusion Thus, when a physicist have N quantum trajectories at his disposal, he associates to any trajectory an **adjoint state** $E^{(n)}$:

$$E^{(n)} = \frac{\boldsymbol{K}_{y_1^{(n)}}^* \circ \ldots \circ \boldsymbol{K}_{y_T^{(n)}}^*(I)}{\operatorname{Tr}\left(\boldsymbol{K}_{y_1^{(n)}}^* \circ \ldots \circ \boldsymbol{K}_{y_T^{(n)}}^*(I)\right)}$$

The log-likelihood of the measurement data is then given by:

$$\log\left(\mathbb{P}\left(\left(\mathbf{y}^{(n)}\right)_{n\leq N}\Big|\hat{\rho}\right)\right) = \sum_{n=1}^{N}\log\operatorname{Tr}\left(E^{(n)}\hat{\rho}\right) + C^{(n)}$$

where $C^{(n)}$ is independent from $\hat{\rho}$. From now on, we use the function **g** :

$$\hat{\rho} \mapsto g\left(\hat{\rho}\right) = \sum_{n=1}^{N} \log \operatorname{Tr}\left(E^{(n)}\hat{\rho}\right)$$

Optimization

Maximization problem

The goal is to find :

$$\hat{\rho}_{ML} = \operatorname*{arg\,max}_{\hat{\rho} \in \mathcal{D}_{\mathcal{H}}} g\left(\hat{\rho}\right) = \operatorname*{arg\,max}_{\hat{\rho} \in \mathcal{D}_{\mathcal{H}}} \left(\sum_{n=1}^{N} \log \operatorname{Tr}\left(E^{(n)}\hat{\rho}\right)\right)$$

- $\mathcal{D}_{\mathcal{H}}$ the set of density operators on \mathcal{H} is convex and compact
- the log-likelihood g is **strongly concave** (iff Vect($E^{(n)}$) describes the set of Hermitian operators)
- => classical optimization by gradient descent
- => asymptotic development of Cramér-Rao bound around $\hat{
 ho}_{\!M\!L}$

The gradient is easy to implement and can be commputed quickly:

$$abla g|_{\hat{
ho}} = \sum_{n=1}^{N} rac{E^{(n)}}{\operatorname{Tr}\left(E^{(n)}\hat{
ho}
ight)}$$

Optimization

Optimality conditions

The density matrix $\overline{\rho}$ maximizes the likelihood function iff [Rouchon and Six, arXiv:1607.00948]:

• Tr
$$\left({{E^{\left(n
ight)} \overline
ho }}
ight) > 0$$
 for $1 \le n \le N$

•
$$\left[\overline{\rho}, \nabla g|_{\overline{\rho}}\right] = \overline{\rho} \nabla g|_{\overline{\rho}} - \nabla g|_{\overline{\rho}} \overline{\rho} = 0$$

• there exists $\overline{\lambda} > 0$ such that $\overline{\lambda P} = \overline{P} \nabla g|_{\overline{\rho}}$ and $\nabla g|_{\overline{\rho}} \leq \overline{\lambda} I_{\mathcal{H}}$, where \overline{P} is the orthogonal projector on the range of $\overline{\rho}$

Maximum Likelihood: estimation variance $\hat{\rho}_{\mathcal{M}} \in \operatorname{int}(\mathcal{D}_{\mathcal{H}})$ is equivalent to $\hat{\rho}_{\mathcal{M}}$ invertible matrix

Variance of estimation: the invertible case

When $\hat{\rho}_{M}$ is **invertible**, the estimation variance of Tr (ρA) is denoted $\sigma_{M}^{2}(A)$ and verifies:

$$\sigma_{ML}^{2}(A) \sim_{N \mapsto +\infty} \left(- \nabla^{2}g \Big|_{\hat{
ho}_{ML}} \right)^{-1} (A_{\parallel}, A_{\parallel})$$

where

$$abla^2 g \Big|_{\hat{
ho}_{\mathsf{ML}}} = -\sum_{n=1}^{N} rac{E_{\parallel}^{(n)} \otimes E_{\parallel}^{(n)}}{E^{(n)} \hat{
ho}_{\mathsf{ML}}}$$

tensor of order 2 on $\mathcal{D}_{\mathcal{H}}$. $E_{\parallel}^{(n)} = E^{(n)} - \operatorname{Tr}\left(E^{(n)}\right)^{n} I / \operatorname{Tr}(I)$ the **projection** of $E^{(n)}$ on the subspace of zero-trace operators

Results for **non-invertible matrices** to be published

Discretization scheme for diffusive systems Quantum state tomography using MaxLike principle Quantum process tomography using

Superconducting qubit from LPA group **Two**-energy-level system [Campagne-Ibarcq et al., PRX]

Experimental validations

- $\mathcal{H} = \mathbb{C}^2$, qubit state in the **Bloch sphere**
- 3 channels of measurement

•
$$L_I = \sigma_- / \sqrt{2T_1}, \ \eta_I = \eta > 0$$

•
$$L_Q = i\sigma_- / \sqrt{2T_1}, \ \eta_Q = \eta > 0$$

•
$$L_{\phi} = \sigma_z / \sqrt{2T_{\phi}}, \ \eta_{\phi} = 0$$

• no Hamiltonian operator H_t

$$d\rho_{t} = \left[\mathcal{D}_{I}\left(\rho_{t}\right) + \mathcal{D}_{Q}\left(\rho_{t}\right) + \mathcal{D}_{\phi}\left(\rho_{t}\right)\right]dt \\ + \sqrt{\eta}\left[\mathcal{M}_{I}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{I}\left(\rho_{t}\right)\right)\rho_{t}\right]dW_{t}^{I} \\ + \sqrt{\eta}\left[\mathcal{M}_{Q}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{Q}\left(\rho_{t}\right)\right)\rho_{t}\right]dW_{t}^{Q}$$

$$dy'_{t} = \sqrt{\frac{\eta}{2T_{1}}} \operatorname{Tr} \left(\sigma_{x}\rho_{t}\right) dt + dW'_{t}$$
$$dy^{Q}_{t} = \sqrt{\frac{\eta}{2T_{1}}} \operatorname{Tr} \left(\sigma_{y}\rho_{t}\right) dt + dW^{Q}_{t}$$

Experimental validations

We have at our disposal $N = 3.10^6$ outcome trajectories consisting in T = 47 measurements on I and Q channels. Sampling time: $\Delta_t = 200$ ns, while:

- $T_1 \approx 4.15 \ \mu s$ the characteristic time of decoherence due to the **measurement**
- $T_{\phi} \approx 35 \ \mu s$ the characteristic time of decoherence due to the **dephasing**

We aim to prepare ρ_0 on (1, 0, 0), but slight imperfections in the preparation process.

Experimental validations

We also estimate:

$$\overline{\rho}_t = \frac{1}{N} \sum_{n=1}^{N} \overline{\rho}_t^{(n)}$$

the **mean of state values** at time t, using:

$$\hat{\rho}_{t,ML} = \operatorname*{arg\,max}_{\hat{\rho} \in \mathcal{D}_{\mathcal{H}}} \prod_{n=1}^{N} \mathrm{d}\mathbb{P}\left(\Delta \mathbf{y}_{t+1}^{(n)}, \dots, \Delta \mathbf{y}_{T}^{(n)} \middle| \rho_{t}^{(n)} = \hat{\rho}\right)$$

Comparison with the estimation of \overline{x}_t and \overline{y}_t by **averaging** the measurement signals:

Experimental validations on Z

- red: Maximum Likelihood estimation of $z_{ML}(t)$, obtained using $N = 4.10^4$ outcome trajectories
- blue: confidence interval $z_{ML}(t) \pm 2\sigma_{ML}^2(\sigma_z)$

Experimental validations on X and Y

- red: **Maximum Likelihood** estimation of $x_{ML}(t)$ and $y_{ML}(t)$, obtained using $N = 4.10^4$ outcome trajectories
- blue: confidence interval $x_{ML}(t) \pm 2\sigma_{ML}^2(\sigma_x)$ (id. for y)
- points: averaging estimation using $N = 3.10^6$ outcome traj.

Experimental validations on X and Y

- red: **Maximum Likelihood** estimation of $x_{MI}(t)$ and $y_{MI}(t)$, obtained using $N = 4.10^4$ outcome trajectories
- blue: confidence interval $x_{ML}(t) \pm 2\sigma_{M}^2(\sigma_x)$ (id. for y)
- points: averaging estimation using $N = 4.10^4$ outcome traj.

Quantum process tomography using MaxLike principle and particle filters

Introduction to process tomography

The problem is to estimate the **exact parameter value** \overline{p} that generated the outcome trajectories $\mathbf{y}^{(n)}$ thanks to the Belavkin filter

$$\overline{\rho}_{0}^{(n)} = \overline{\rho}, \quad \overline{\rho}_{k}^{(n)} = \frac{\boldsymbol{\mathcal{K}}_{k^{(n)}, y_{k}^{(n)}}^{\overline{\rho}} \left(\overline{\rho}_{k-1}^{(n)}\right)}{\operatorname{Tr}\left(\boldsymbol{\mathcal{K}}_{k^{(n)}, y_{k}^{(n)}}^{\overline{\rho}} \left(\overline{\rho}_{k-1}^{(n)}\right)\right)}$$
$$\mathbb{P}\left(y_{k}^{(n)} = y | \overline{\rho}, \overline{\rho}_{k-1}^{(n)}\right) = \operatorname{Tr}\left(\boldsymbol{\mathcal{K}}_{k^{(n)}, y}^{\overline{\rho}} (\overline{\rho}_{k-1}^{(n)})\right)$$

• exact values $\overline{\rho}$ and \overline{p} may not be known => consider the **approximate filter** using ρ and p

• stability is measured using **fidelity** pseudo-metric *F*:

$$F(\rho, \rho') = \sqrt{\sqrt{\rho}\rho'\sqrt{\rho}} \in [0; 1]$$

with $F(\rho, \rho') = 1$ equivalent to ρ and ρ' describing the same physical state.

A first stability result

Theorem (Stability w.r.t. initial condition, *Rouchon et al.*, IEEE, 2011)

Exact filter $(\overline{\rho}, \overline{p})$	Approximate filter (ho, \overline{p})
$\overline{\rho}_0 = \overline{\rho}$	$ \rho_0^{\overline{p}} = \rho $
$\overline{\rho}_{k} = \frac{\boldsymbol{\kappa}_{k,y_{k}}^{p}(\overline{\rho}_{k-1})}{\overline{\boldsymbol{\kappa}_{k-1}}}$	$\rho_{k}^{\overline{p}} = \frac{\boldsymbol{K}_{k,y_{k}}^{p}(\rho_{k-1}^{p})}{\boldsymbol{K}_{k,y_{k}}^{p}(\rho_{k-1}^{p})}$
$\mathcal{P}_{k} = Tr(\mathbf{K}_{k,y_{k}}(\overline{\rho}_{k-1}^{\overline{p}}))$	$\mathcal{P}_{k} = Tr\left(\mathcal{K}_{k,y_{k}}^{\overline{p}}\left(\rho_{k-1}^{\overline{p}}\right)\right)$

The y_k are generated by the exact filter. Then, at each time k, the fidelity between exact and approximate states increases in expectancy:

$$\left|\mathbb{E}_{y_{k}}\left(F\left(\overline{\rho}_{k},\rho_{k}^{\overline{p}}\right)\middle|y_{1},\ldots,y_{k-1}\right)\geq F\left(\overline{\rho}_{k-1},\rho_{k-1}^{\overline{p}}\right)\right|$$

A quantum filter tends to forget its initial condition.

Problematics

- Is it possible to estimate \overline{p} initializing the filter with approximate initial state ρ ? Is Maximum-Likelihood Principle relevant for that ?
 - Device with $(\overline{\rho}, \overline{p})$ generated trajectory (y_1, \ldots, y_T) .
 - Experimenter knows that $\overline{p} \in \{a; b\}$.
 - Experimenter has to test filters (ρ, a) and (ρ, b) , with ρ an approximate initial state.
 - The measurements are the **only** information available on \overline{p} .

Probability filter

We denote:

$$\pi_{k}^{a} = \mathbb{P}\left(\overline{p} = a \middle| \rho, y_{1}, \dots, y_{k}\right)$$
$$\pi_{k}^{b} = \mathbb{P}\left(\overline{p} = b \middle| \rho, y_{1}, \dots, y_{k}\right)$$

These probabilities iterate with the following parallel filters, via Bayes' law:

 C_k such that $\pi^a_{\nu} + \pi^b_{\nu} = 1$.

Set $\overline{p} = a$. What can we say about π^a_{μ} and ρ^a_{μ} ?

Extended density matrices

Extended density matrices Ξ_k are parallel density matrices that enclose the uncertainty on the parameter value:

$$\Xi_k = \left(\begin{array}{c|c} \pi_k^a \rho_k^a & 0\\ \hline 0 & \pi_k^b \rho_k^b \end{array} \right).$$

 (ρ_k^a, π_k^a) and (ρ_k^b, π_k^b) are respectively the states of probability filters (ρ, a) and (ρ, b) .

 Ξ_k fulfils all the **properties of a density matrix**.

Extended Belavkin filter

Thus, the extended state Ξ_k is iterated thanks to the following formula:

$$\begin{split} \Xi_{0} &= \left(\begin{array}{c|c} \pi_{0}^{a}\rho & 0\\ \hline 0 & \pi_{0}^{b}\rho \end{array} \right), \\ \Xi_{k} &= \frac{\left(\begin{array}{c|c} \pi_{k-1}^{a}\boldsymbol{K}_{k,y_{k}}^{a}\left(\rho_{k-1}^{a}\right) & 0\\ \hline 0 & \pi_{k-1}^{b}\boldsymbol{K}_{k,y_{k}}^{b}\left(\rho_{k-1}^{b}\right) \end{array} \right)}{\pi_{k-1}^{a}\mathrm{Tr}\left(\boldsymbol{K}_{k,y_{k}}^{a}\left(\rho_{k-1}^{a}\right)\right) + \pi_{k-1}^{b}\mathrm{Tr}\left(\boldsymbol{K}_{k,y_{k}}^{b}\left(\rho_{k-1}^{b}\right)\right)} \end{split}$$

This is actually an **extended approximate Belavkin filter**, as it is equivalent to $\Xi_k = \mathbf{K}_{k,y_k}^{\text{ext}}(\Xi_{k-1}) / \text{Tr} (\mathbf{K}_{k,y_k}^{\text{ext}}(\Xi_{k-1}))$, with $\mathbf{K}_y^{\text{ext}}$ a partial Kraus map containing the extended matrices built from the ones of \mathbf{K}_y^a and \mathbf{K}_y^b .

Exact extended filter

The exact filter corresponding to the real device can be extended as well. Its initial state writes:

$$\overline{\Xi}_0 = \begin{pmatrix} \overline{\rho} & 0 \\ \hline 0 & 0 \end{pmatrix}, \text{ as } \overline{p} = a.$$

Its state is iterated thanks to the **same** extended Kraus map $(\mathbf{K}_{y}^{\text{ext}})$: $\overline{\Xi}_{k} = \mathbf{K}_{k,y_{k}}^{\text{ext}} \left(\overline{\Xi}_{k-1}\right) / \text{Tr} \left(\mathbf{K}_{k,y_{k}}^{\text{ext}} \left(\overline{\Xi}_{k-1}\right)\right)$

which ensures that:

$$\overline{\Xi}_k = \left(\begin{array}{c|c} \overline{\rho}_k & 0\\ \hline 0 & 0 \end{array} \right),$$

with $\overline{\rho}_k$ generated by the **exact filter** $(\overline{\rho}, \overline{p})$.

Stability results

Theorem (Stability to initial condition, Six et al., CDC 2015)

Exact filter
$$(\overline{\rho}, a \text{ and } b)$$
 Approximate filter $(\rho, a \text{ and } b)$

$$\overline{\Xi}_{0} = \left(\frac{\overline{\rho} \mid 0}{0 \mid 0}\right),$$

$$\overline{\Xi}_{k} = \frac{\kappa_{k,y_{k}}^{ext}(\overline{\Xi}_{k-1})}{Tr\left(\kappa_{k,y_{k}}^{ext}(\overline{\Xi}_{k-1})\right)}$$

$$\Xi_{k} = \frac{\kappa_{k,y_{k}}^{ext}(\Xi_{k-1})}{Tr\left(\kappa_{k,y_{k}}^{ext}(\Xi_{k-1})\right)}$$

The y_k are generated by the **exact filter**. Thus, $\pi_k^a F(\overline{\rho}_k, \rho_k^a)$ is a **sub-martingale**.

$$\mathbb{E}_{\mathbf{y}_{k}}\left(\pi_{k}^{a}F\left(\overline{\rho}_{k},\rho_{k}^{a}\right)\left|\overline{\Xi}_{k-1},\Xi_{k-1}\right\rangle\geq\pi_{k-1}^{a}F\left(\overline{\rho}_{k-1},\rho_{k-1}^{a}\right)$$

Furthermore, if the initial condition $\rho = \overline{\rho}$, it becomes:

$$\mathbb{E}_{y_k}\left(\pi_k^a \middle| \overline{\Xi}_{k-1}, \Xi_{k-1}\right) \geq \pi_{k-1}^a$$

Experimental validations

- $\mathcal{H} = \mathbb{C}^2$, qubit state in the **Bloch sphere**
- 3 channels of measurement

•
$$L_I = \sigma_- / \sqrt{2T_1}, \ \eta_I = \eta > 0$$

•
$$L_Q = i\sigma_- / \sqrt{2T_1}, \ \eta_Q = \eta > 0$$

•
$$L_{\phi} = \sigma_z / \sqrt{2T_{\phi}}, \ \eta_{\phi} = 0$$

• no Hamiltonian operator H_t

$$d\rho_{t} = \left[\mathcal{D}_{I}\left(\rho_{t}\right) + \mathcal{D}_{Q}\left(\rho_{t}\right) + \mathcal{D}_{\phi}\left(\rho_{t}\right)\right]dt \\ + \sqrt{\eta}\left[\mathcal{M}_{I}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{I}\left(\rho_{t}\right)\right)\rho_{t}\right]dW_{t}^{I} \\ + \sqrt{\eta}\left[\mathcal{M}_{Q}\left(\rho_{t}\right) - \operatorname{Tr}\left(\mathcal{M}_{Q}\left(\rho_{t}\right)\right)\rho_{t}\right]dW_{t}^{Q}$$

$$dy'_{t} = \sqrt{\frac{\eta}{2T_{1}}} \operatorname{Tr} \left(\sigma_{x}\rho_{t}\right) dt + dW'_{t}$$
$$dy^{Q}_{t} = \sqrt{\frac{\eta}{2T_{1}}} \operatorname{Tr} \left(\sigma_{y}\rho_{t}\right) dt + dW^{Q}_{t}$$

Experimental validations

Now, we want to estimate the **detection efficiency** η .

- Preliminary calibration shows that $\overline{\eta} = 0.26 \pm 0.02$
- Still use of $N = 3.10^6$ outcome trajectories of T = 50 measurements on I and Q channels
- Same sampling period and measurement/decoherence damping times
- Initial state around $\left(I_{\mathcal{H}} + \sigma_{\mathrm{x}} \right)/2$ to maximize the information on η

Experimental Validation on a Superconducting Qubit

Experimental Validation on a Superconducting Qubit

Experimental Validation on a Superconducting Qubit

Outline of other works

• direct optimization for **multi-dimensional** parametric estimation: use of **adjoint method**

For LKB photon box, simultaneous estimation of 32 parameters in measurement matrices

- results on MaxLike estimation variance when $\hat{\rho}_{ML}$ is not invertible
- link with the Bayesian Mean Estimation