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Subject of this talk
Traditionally, quantum state tomography is based on single
projective measurements [Paris et Řeháček, 2004]
Several techniques exist, including:

MaxLike principle [Lvovsky et Raymer, RMP 2009]

ρ̂ = argmax
ρ

( n∏
ν=1

Tr (ρΠν)mν

)

MaxEnt principle [Bužek, Lecture Notes on Physics 649,
2004]

ρ̂ most entropic state verifying Tr (ρ̂Πν) = πν , ∀ν ≤ n

Compressed Sensing [Gross et al., PRL 2010]

ρ̂ minimizing ||ρ̂||tr and verifying Tr (ρ̂Πν) = πν , ∀ν ≤ n
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Subject of this talk
Previous techniques don’t take into account the dynamics of the
system

Goal of my thesis: state and parameter quantum tomography
along some discrete-time and diffusive quantum trajectories in
finite-dimensionnal systems
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Contributions of this talk
Based on quantum trajectories

for diffusive systems, a discretization scheme preserving the
positivity of state
methods for state quantum tomography using MaxLike
principle
introduction to process quantum tomography via particle
filters, and a result of stability of this estimation w.r.t. initial
state
validations using outcome trajectories produced by
supraconducting qubit
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Discretization scheme for diffusive systems
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Discrete-time systems: a brief reminder
In the following, ρ evolves in a Hilbert space H of dimension d

Definition (Kraus applications, Nielsen and Chuang, 2000)
A discrete-time measurement on H is described by the complete
set of partial Kraus applications (Ky )y≤r , verifying:

r ≤ d2

∀y ≤ r ,∃Iy finite and (Myl )l≤Iy such that

∀ρ ∈ L (H) , Ky (ρ) =
Iy∑

l=1
MylρM†yl

The set (Ky )y≤r is complete as:

r∑
y=1

Iy∑
l=1

M†ylMyl = IH
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Discrete-time systems: a brief reminder
Denoting ρ− and ρ+ the states before and after the
measurement, and y its outcome:

ρ+ = Ky (ρ−)
Tr (Ky (ρ−))

P (y = ỹ |ρ− = ρ̃) = Tr (K ỹ (ρ̃))

Measurement imperfections: measurement of 1 ≤ z ≤ rz
instead of y

ρ+ =
∑r

ỹ=1 ηzỹK ỹ (ρ−)
Tr
(∑r

ỹ=1 ηzỹK ỹ (ρ−)
)

P (z = z̃ |ρ− = ρ̃) =
r∑

ỹ=1
ηz̃ ỹTr (K ỹ (ρ̃))

where ηz̃ ỹ = P (z = z̃ |y = ỹ).
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Discrete-time systems: a brief reminder
Introducing ηz̃ ỹ and unitary evolutions in K ỹ

Definition (Belavkin filter)
Denote t0 < t1 < t2 < . . . < tT , with t0 the initial time and
(tk)k≥1 the instants during which a discrete-time measurement
occurs on the system. We associate to each of them a complete
Kraus set (Kk,y )y<rk

.
Then, the state evolves from ρ0 according to the Belavkin filter:

ρk = Kk,yk (ρk−1)
Tr (Kk,yk (ρk−1))

P (yk = ỹ |ρk−1 = ρ̃) = Tr (Kk,ỹ (ρ̃))

where ρk = ρ(tk).

We recall that Ky (ρ) =
∑Iy

l=1MylρM†yl .
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Evolution of diffusive systems

Stochastic Master Equation [Barchielli et Gregoratti, 2009]
Evolution of state ρ, with respect to diffusive measurement
processes (dyνt )ν≤n

dρt =
[
− i
~

[
Ht , ρt

]
+

n∑
ν=1
Dν (ρt)

]
dt

+
n∑
ν=1

√
ην
[
Mν (ρt)− Tr (Mν (ρt)) ρt

]
dW ν

t

and the measurement processes dyνt :

dyνt = √ηνTr (Mν (ρt)) dt + dW ν
t

Model experimentally validated on a superconducting
qubit [Campagne-Ibarcq, PRX 6]
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Evolution of diffusive systems

dρt =
[
− i
~

[
Ht , ρt

]
+

n∑
ν=1
Dν (ρt)

]
dt

+
n∑
ν=1

√
ην
[
Mν (ρt)− Tr (Mν (ρt)) ρt

]
dW ν

t

dyνt = √ηνTr (Mν (ρt)) dt + dW ν
t

ρt operator of the finite-dimension Hilbert space H, density
matrix, i.e. Tr (ρt) = 1, ρt = ρ†t and ρt ≥ 0
Ht Hamiltonien operator, zero-trace and Hermitian
Dν Lindblad superoperator:

Dν (ρ) = LνρL†ν −
(
L†νLνρ+ ρL†νLν

)
/2

Mν measurement superoperator:

Mν (ρ) = Lνρ+ ρL†ν
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Evolution of diffusive systems

dρt =
[
− i
~

[
Ht , ρt

]
+

n∑
ν=1
Dν (ρt)

]
dt

+
n∑
ν=1

√
ην
[
Mν (ρt)− Tr (Mν (ρt)) ρt

]
dW ν

t

dyνt = √ηνTr (Mν (ρt)) dt + dW ν
t

(dW ν
t )ν independent Wiener processes (independent and

stationary increments, continuous path), verifying:

dW ν
t ∼ N

(
0,
√

dt
)
, ν ≤ n

ην ∈ [0; 1]: detection efficiency of measurement ν
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Discretization scheme
The Stochastic Master Equation is not linear.

Definition (Discretization scheme)
We provide a discretization scheme of the SME :

ρt = E
(
ρt
∣∣∣ρt−∆t ,∆yt

)
= K t,∆yt (ρt−∆t )

Tr (K t,∆yt (ρt−∆t ))

∆t : sampling time of diffusive signals
∆yt = (∆yνt )ν≤n and ∆yνt =

∫ s=t
s=t−∆t

dyνs the sampled
measurements
ρ 7→ K t,∆yt (ρ) linear application with Kraus application
structure:

K t,∆y (ρ) = (Nt,∆y)ρ(Nt,∆y)† +
n∑
ν=1

GνρG†ν∆t
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Discretization scheme
This scheme has two advantages:

it preserves the positivity of the state along a measurement
trajectory
it is associated with a probability law:

P
(
∀ν ≤ n,∆yν ≤ ∆yνt ≤ ∆yν + dyν

∣∣∣ρt−∆t = ρ
)

=

Tr (K t,∆y (ρ))×
( n∏
ν=1

dyν
)

13 / 49



Discretization scheme for diffusive systems Quantum state tomography using MaxLike principle Quantum process tomography using MaxLike principle and particle filters

Discretization scheme
Expression of the scheme
The discretized Kraus application K t,∆y writes, for any ρ and
∆y:

K t,∆y(ρ) =
exp

(
− ||∆y||2

2

)
(2π∆t) N

2
K̃ t,∆y(ΣtρΣ†t)

where:
K̃ t,∆y(ρ) = (Mt,∆y)ρ(Mt,∆y)† +

∑n
ν=1(1− ην)LνρL†ν∆t

Mt,∆y = IH +
∑n
ν=1 ηνLν∆yν − Ct∆t

Ct = i
~Ht +

∑n
ν=1

L†νLν
2

Σt =
[
IH + C †t Ct(∆t)2

]− 1
2

Thanks to Σt ,
∫
Rn Tr (K t,∆y(ρ)) d∆y1 . . . d∆yn = 1 for any ρ and

a strictly positive ∆t
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Discretization scheme
Theorem (Convergence in distribution of the discretization scheme)
The discretization scheme defined by:

ρt = K t,∆yt (ρt−∆t )
Tr (K t,∆yt (ρt−∆t )) ,

dP
(

∆yt = ∆y
∣∣∣ρt−∆t = ρ

)
= Tr (K t,∆y (ρ))

converges in distribution towards the SME, for ∆t tending to
the infinitesimal dt.

Sketch of proof: we show two assumptions
same first-order generators for both equations: ∀f scalar
C2−function and ∀ρ density matrix, the expectancy of

f (ρt)− f (ρt−∆t)
∆t over ∆yt , assuming ρt−∆t = ρ

converges when ∆t → dt to the value obtained with SME.
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Discretization scheme: first-order generators
Concerning the SME, recalling that:

dρt = µ(ρt , t)dt +
n∑
ν=1

σν(ρt , t)dW ν
t

the first-order generator is computed using the Itō differential
calculus rules:

Af (ρ) = Edyt

( f (ρt)− f (ρt−dt = ρ)
dt

)
=

∇f |ρ .µ(ρt , t) + 1
2 ∇

2f
∣∣∣
ρ
.

( n∑
ν=1

[σν(ρ, t), σν(ρ, t)]
)
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Discretization scheme: first-order generators
Concerning the discretization scheme, we simply use expansion
series:

Bf (ρ) = lim
∆t→dt

E∆y

( f (ρt)− f (ρt−∆t = ρ)
∆t

)
=

lim
∆t→dt

E∆y

 f
(

K t,∆y(ρ)
Tr(K t,∆y(ρ))

)
− f (ρt−∆t = ρ)

∆t


the term exp

(
− ||∆y||2

4

)
/(2π∆t) N

4 vanishes

terms of the order ∆yνt , (∆yνt )2 and dt: we consider K̃ t,∆y(ρ)
whose additive structure fits well with expansion series
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Quantum state tomography using MaxLike principle
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MaxLike principle

Definition (Maximum Likelihood)
Using realisations X1, . . . ,XN successively obtained according to
the probability law

X 7→ f (X
∣∣∣ θ = θ),

the MaxLike estimation of θ consists in choosing θ̂ML which
maximizes on the set Θ the conditional probabilities of Xi :

θ̂ML = argmax
θ∈Θ

f
(
X1, . . . ,XN

∣∣θ)
= argmax

θ∈Θ

N∏
n=1

f
(
Xn
∣∣θ)

f is called likelihood function.
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Consistency of Maximum Likelihood
The MaxLike estimation can be biased :

θ̂ML(N) = EX1,...,XN

(
θ̂ML (X1, . . . ,XN)

)
6= θ,

but, if Θ is a compact space, θ ∈ int (Θ) (among other properties),
this estimation is consistent :

lim
N→+∞

θ̂ML(N) = θ in probability

Definition (Estimation variance)
Estimation variance σ2ML(N) of Maximum Likelihood is defined by:

σ2ML(N) = EX1,...,XN((
θ̂ML (X1, . . . ,XN)− θ̂ML(N)

)
.
(
θ̂ML (X1, . . . ,XN)− θ̂ML(N)

)T
)
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Maximum Likelihood properties

Cramér-Rao bound
For any unbiased estimator C , if the likelihood f is a
C2−function w.r.t. θ, and EX are ∂2/∂θ2 invertible :

σ2C (N) ≥

(
−EX

(
∂2

∂θ2 log
(
f
(
X
∣∣∣θ))))−1

N

This bound does not depend on the estimator C .
Maximum Likelihood is asymptotically efficient :

σ2ML(N) ∼N→+∞

(
−EX

(
∂2

∂θ2 log
(
f
(
X
∣∣∣θ))))−1

N in prob.

when EX and ∂3/∂θ3 are locally invertible around θ.
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Likelihood function of measurement trajectories
Likelihood of a measurement trajectory (y1, . . . , yT ), supposing
that ρ0 = ρ̂ ?

Bayes’ law gives:

P
(

(yk)k≤T

∣∣∣ρ̂) =
T∏

k=1
P
(
yk
∣∣∣ρ̂, (ys)s≤k−1

)
Approximated quantum filter initialized with ρ̂ :

ρ̂0 = ρ̂, ρ̂k = Kyk (ρ̂k−1)
Tr (Kyk (ρ̂k−1)) ,

P
(
yk
∣∣∣ρ̂, (ys)s≤k−1

)
= Tr (Kyk (ρ̂k−1))

Linearity of Kraus applications
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Likelihood function of measurement trajectories
Likelihood of a measurement trajectory (y1, . . . , yT ), supposing
that ρ0 = ρ̂ :

P
(

(yk)k≤T

∣∣∣ρ̂) = Tr (KyT ◦ . . . ◦Ky1 (ρ̂))

Adjoint Kraus applications denoted K∗ [Quantum Smoothing -
Tsang 2009, Past Quantum States - Gammelmark et al., 2013] :

∀ operators A and B, Tr (AKy (B)) = Tr
(
K∗y (A)B

)
Thus, the likelihood of a trajectory is given by:

P
(

(yk)k≤T

∣∣∣ρ̂) = Tr
(
K∗y1 ◦ . . . ◦K

∗
yT (I) ρ̂

)
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Likelihood function of measurement trajectories: conclusion
Thus, when a physicist have N quantum trajectories at his
disposal, he associates to any trajectory an adjoint state E (n) :

E (n) =
K∗

y (n)
1
◦ . . . ◦K∗

y (n)
T

(I)

Tr
(
K∗

y (n)
1
◦ . . . ◦K∗

y (n)
T

(I)
)

The log-likelihood of the measurement data is then given by:

log
(
P
((

y(n)
)

n≤N

∣∣∣ρ̂)) =
N∑

n=1
log Tr

(
E (n)ρ̂

)
+ C (n)

where C (n) is independent from ρ̂.
From now on, we use the function g :

ρ̂ 7→ g (ρ̂) =
N∑

n=1
log Tr

(
E (n)ρ̂

)
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Optimization
Maximization problem
The goal is to find :

ρ̂ML = argmax
ρ̂∈DH

g (ρ̂) = argmax
ρ̂∈DH

( N∑
n=1

log Tr
(
E (n)ρ̂

))

DH the set of density operators on H is convex and compact
the log-likelihood g is strongly concave (iff Vect(E (n))
describes the set of Hermitian operators)

=> classical optimization by gradient descent
=> asymptotic development of Cramér-Rao bound around ρ̂ML

The gradient is easy to implement and can be commputed quickly:

∇g |ρ̂ =
N∑

n=1

E (n)

Tr
(
E (n)ρ̂

)
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Optimization

Optimality conditions
The density matrix ρ maximizes the likelihood function
iff [Rouchon and Six, arXiv:1607.00948]:

Tr
(
E (n)ρ

)
> 0 for 1 ≤ n ≤ N[

ρ, ∇g |ρ
]

= ρ ∇g |ρ − ∇g |ρ ρ = 0

there exists λ > 0 such that λP = P ∇g |ρ and ∇g |ρ ≤ λIH,
where P is the orthogonal projector on the range of ρ
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Maximum Likelihood: estimation variance
ρ̂ML ∈ int (DH) is equivalent to ρ̂ML invertible matrix

Variance of estimation: the invertible case
When ρ̂ML is invertible, the estimation variance of Tr (ρA) is
denoted σ2ML(A) and verifies:

σ2ML(A) ∼N 7→+∞

(
− ∇2g

∣∣∣
ρ̂ML

)−1
(A‖,A‖)

where

∇2g
∣∣∣
ρ̂ML

= −
N∑

n=1

E (n)
‖ ⊗ E (n)

‖

E (n)ρ̂ML

tensor of order 2 on DH.
E (n)
‖ = E (n) − Tr

(
E (n)

)
I/Tr (I) the projection of E (n) on the

subspace of zero-trace operators

Results for non-invertible matrices to be published
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Superconducting qubit from LPA group
Two-energy-level system [Campagne-Ibarcq et al., PRX]
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Experimental validations
H = C2, qubit state in the Bloch sphere
3 channels of measurement

LI = σ−/
√
2T1, ηI = η > 0

LQ = iσ−/
√
2T1, ηQ = η > 0

Lφ = σz/
√

2Tφ, ηφ = 0
no Hamiltonian operator Ht

dρt = [DI (ρt) +DQ (ρt) +Dφ (ρt)] dt

+√η
[
MI (ρt)− Tr (MI (ρt)) ρt

]
dW I

t

+√η
[
MQ (ρt)− Tr (MQ (ρt)) ρt

]
dWQ

t

dy I
t =

√
η

2T1
Tr (σxρt) dt + dW I

t

dyQ
t =

√
η

2T1
Tr (σyρt) dt + dWQ

t
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Experimental validations
We have at our disposal N = 3.106 outcome trajectories consisting
in T = 47 measurements on I and Q channels.
Sampling time: ∆t = 200 ns, while:

T1 ≈ 4.15 µs the characteristic time of decoherence due to
the measurement
Tφ ≈ 35 µs the characteristic time of decoherence due to the
dephasing

We aim to prepare ρ0 on (1, 0, 0), but slight imperfections in the
preparation process.
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Experimental validations
We also estimate:

ρt = 1
N

N∑
n=1

ρ
(n)
t

the mean of state values at time t, using:

ρ̂t,ML = argmax
ρ̂∈DH

N∏
n=1

dP
(

∆y(n)
t+1, . . . ,∆y(n)

T

∣∣∣ρ(n)
t = ρ̂

)
Comparison with the estimation of x t and y t by averaging the
measurement signals:

< dy I
t > =

√
η

2T1
xtdt

< dyQ
t > =

√
η

2T1
ytdt
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Experimental validations on Z
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red: Maximum Likelihood estimation of zML(t), obtained
using N = 4.104 outcome trajectories
blue: confidence interval zML(t)± 2σ2ML(σz)
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Experimental validations on X and Y
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red: Maximum Likelihood estimation of xML(t) and yML(t),
obtained using N = 4.104 outcome trajectories
blue: confidence interval xML(t)± 2σ2ML(σx ) (id. for y)
points: averaging estimation using N = 3.106 outcome traj.
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Experimental validations on X and Y
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red: Maximum Likelihood estimation of xML(t) and yML(t),
obtained using N = 4.104 outcome trajectories
blue: confidence interval xML(t)± 2σ2ML(σx ) (id. for y)
points: averaging estimation using N = 4.104 outcome traj.
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Quantum process tomography using MaxLike principle and
particle filters
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Introduction to process tomography
The problem is to estimate the exact parameter value p that
generated the outcome trajectories y(n) thanks to the Belavkin
filter

ρ
(n)
0 = ρ, ρ

(n)
k =

Kp
k(n),y (n)

k

(
ρ

(n)
k−1

)
Tr
(
Kp

k(n),y (n)
k

(
ρ

(n)
k−1

))
P
(
y (n)

k = y |p, ρ(n)
k−1

)
= Tr

(
Kp

k(n),y (ρ(n)
k−1)

)
exact values ρ and p may not be known
=> consider the approximate filter using ρ and p
stability is measured using fidelity pseudo-metric F :

F
(
ρ, ρ′

)
=
√√

ρρ′
√
ρ ∈ [0; 1]

with F (ρ, ρ′) = 1 equivalent to ρ and ρ′ describing the same
physical state.
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A first stability result

Theorem (Stability w.r.t. initial condition, Rouchon et al., IEEE,
2011)

Exact filter (ρ, p) Approximate filter (ρ, p)
ρ0 = ρ ρp

0 = ρ

ρk =
Kp

k,yk
(ρk−1)

Tr
(
Kk,yk

(
ρp

k−1

)) ρp
k =

Kp
k,yk

(
ρp

k−1

)
Tr
(
Kp

k,yk

(
ρp

k−1

))
The yk are generated by the exact filter.
Then, at each time k, the fidelity between exact and approximate
states increases in expectancy:

Eyk

(
F
(
ρk , ρ

p
k

) ∣∣∣y1, . . . , yk−1
)
≥ F

(
ρk−1, ρ

p
k−1

)
A quantum filter tends to forget its initial condition.
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Problematics

Is it possible to estimate p initializing the filter with approximate
initial state ρ ?

Is Maximum-Likelihood Principle relevant for that ?

Device with (ρ, p) generated trajectory (y1, . . . , yT ).
Experimenter knows that p ∈ {a; b}.
Experimenter has to test filters (ρ, a) and (ρ, b), with ρ an
approximate initial state.
The measurements are the only information available on p.
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Probability filter

We denote:

∣∣∣∣∣∣
πa

k = P
(
p = a

∣∣∣ρ, y1, . . . , yk
)

πb
k = P

(
p = b

∣∣∣ρ, y1, . . . , yk
)

These probabilities iterate with the following parallel filters, via
Bayes’ law:

Approximate Filter (ρ, a) Approximate Filter (ρ, b)
ρa
0 = ρ, πa

0 = πa ρb
0 = ρ, πb

0 = πb

ρa
k =

Ka
k,yk (ρa

k−1)
Tr
(
Ka

k,yk (ρa
k−1)

) ρb
k =

Kb
k,yk (ρb

k−1)
Tr
(
Kb

k,yk (ρb
k−1)

)
πa

k =
πa

k−1Tr
(
Ka

k,yk (ρa
k−1)

)
Ck

πb
k =

πb
k−1Tr

(
Kb

k,yk (ρb
k−1)

)
Ck

Ck such that πa
k + πb

k = 1.

Set p = a. What can we say about πa
k and ρa

k ?
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Extended density matrices
Extended density matrices Ξk are parallel density matrices that
enclose the uncertainty on the parameter value:

Ξk =
(
πa

kρ
a
k 0

0 πb
kρ

b
k

)
.

(ρa
k , π

a
k) and

(
ρb

k , π
b
k

)
are respectively the states of probability

filters (ρ, a) and (ρ, b).
Ξk fulfils all the properties of a density matrix.
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Extended Belavkin filter
Thus, the extended state Ξk is iterated thanks to the following
formula:

Ξ0 =
(
πa
0ρ 0
0 πb

0ρ

)
,

Ξk =

 πa
k−1K

a
k,yk

(
ρa

k−1

)
0

0 πb
k−1K

b
k,yk

(
ρb

k−1

) 
πa

k−1Tr
(
Ka

k,yk

(
ρa

k−1

))
+ πb

k−1Tr
(
Kb

k,yk

(
ρb

k−1

))
This is actually an extended approximate Belavkin filter, as it is
equivalent to Ξk = K ext

k,yk (Ξk−1) /Tr
(
K ext

k,yk (Ξk−1)
)
, with K ext

y a
partial Kraus map containing the extended matrices built from the
ones of Ka

y and Kb
y .
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Exact extended filter
The exact filter corresponding to the real device can be extended
as well. Its initial state writes:

Ξ0 =
(
ρ 0
0 0

)
, as p = a.

Its state is iterated thanks to the same extended Kraus map(
K ext

y

)
:

Ξk = K ext
k,yk

(
Ξk−1

)
/Tr

(
K ext

k,yk

(
Ξk−1

))
which ensures that:

Ξk =
(
ρk 0
0 0

)
,

with ρk generated by the exact filter (ρ, p).
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Stability results

Theorem (Stability to initial condition, Six et al., CDC 2015)
Exact filter (ρ, a and b) Approximate filter (ρ, a and b)

Ξ0 =
(
ρ 0
0 0

)
, Ξ0 =

(
πa
0ρ 0
0 πb

0ρ

)
Ξk =

Kext
k,yk (Ξk−1)

Tr
(
Kext

k,yk (Ξk−1)
) Ξk =

Kext
k,yk

(Ξk−1)

Tr
(
Kext

k,yk
(Ξk−1)

)
The yk are generated by the exact filter.
Thus, πa

kF (ρk , ρ
a
k) is a sub-martingale.

Eyk

(
πa

kF (ρk , ρ
a
k)
∣∣∣Ξk−1,Ξk−1

)
≥ πa

k−1F
(
ρk−1, ρ

a
k−1

)
Furthermore, if the initial condition ρ = ρ, it becomes:

Eyk

(
πa

k

∣∣∣Ξk−1,Ξk−1
)
≥ πa

k−1
43 / 49



Discretization scheme for diffusive systems Quantum state tomography using MaxLike principle Quantum process tomography using MaxLike principle and particle filters

Experimental validations
H = C2, qubit state in the Bloch sphere
3 channels of measurement

LI = σ−/
√
2T1, ηI = η > 0

LQ = iσ−/
√
2T1, ηQ = η > 0

Lφ = σz/
√

2Tφ, ηφ = 0
no Hamiltonian operator Ht

dρt = [DI (ρt) +DQ (ρt) +Dφ (ρt)] dt

+√η
[
MI (ρt)− Tr (MI (ρt)) ρt

]
dW I

t

+√η
[
MQ (ρt)− Tr (MQ (ρt)) ρt

]
dWQ

t

dy I
t =

√
η

2T1
Tr (σxρt) dt + dW I

t

dyQ
t =

√
η

2T1
Tr (σyρt) dt + dWQ

t
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Experimental validations
Now, we want to estimate the detection efficiency η.

Preliminary calibration shows that η = 0.26± 0.02
Still use of N = 3.106 outcome trajectories of T = 50
measurements on I and Q channels
Same sampling period and measurement/decoherence
damping times
Initial state around (IH + σx ) /2 to maximize the information
on η
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Experimental Validation on a Superconducting Qubit
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Experimental Validation on a Superconducting Qubit
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Experimental Validation on a Superconducting Qubit
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Outline of other works
direct optimization for multi-dimensional parametric
estimation: use of adjoint method

For LKB photon box, simultaneous estimation of 32
parameters in measurement matrices
results on MaxLike estimation variance when ρ̂ML is not
invertible
link with the Bayesian Mean Estimation
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