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Subject of this talk

Traditionally, quantum state tomography is based on single
projective measurements [Paris et Rehacek, 2004]
Several techniques exist, including:

e MaxLike principle [Lvovsky et Raymer, RMP 2009]

n
p = arg max (H Tr (pl_ll,)m”>

P v=1

e MaxEnt principle [Buzek, Lecture Notes on Physics 649,
2004]

) most entropic state verifying Tr(pMN,) = m,, Vv <n
e Compressed Sensing [Gross et al., PRL 2010]

P minimizing ||p||¢r and verifying Tr (pM,) = m,, Vv < n



Subject of this talk
Previous techniques don't take into account the dynamics of the

system
Po PT
0
Yk ~ pk—1,P
ly ~ po; P
dyt ~ Pt; P

Goal of my thesis: state and parameter quantum tomography
along some discrete-time and diffusive quantum trajectories in
finite-dimensionnal systems



Contributions of this talk
Based on quantum trajectories
e for diffusive systems, a discretization scheme preserving the
positivity of state
@ methods for state quantum tomography using MaxLike
principle
@ introduction to process quantum tomography via particle
filters, and a result of stability of this estimation w.r.t. initial
state
@ validations using outcome trajectories produced by
supraconducting qubit
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Discretization scheme for diffusive systems
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Discrete-time systems: a brief reminder
In the following, p evolves in a Hilbert space H of dimension d

Definition (Kraus applications, Nielsen and Chuang, 2000)

A discrete-time measurement on H is described by the complete
set of partial Kraus applications (Ky)ygrv verifying:

r<d?

Vy < r,3l, finite and (M) such that

I<ly,
I.V

Voe L(H), Ky(p)= Z My/PM;/
=1

The set (K ), ., is complete as:

r @
Z Z M;,/\/Iy, = I

y=1/=1
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Discrete-time systems: a brief reminder

@ Denoting p_ and p4 the states before and after the
measurement, and y its outcome:

Py = Ky (p-)
T T (K (po)
P(y =ylp- = p) = Tr(Ky (p))

o Measurement imperfections: measurement of 1 <z <r,
instead of y

_ y—171z9Ky (p-)
P+ = ;
Tr (Sf-1ne7 Ky (0-))

Plz=2p =) = Y 1 Tr(Ky (7)
y=1

where nzy =P (z = Z|y = 3).

49
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Discrete-time systems: a brief reminder
Introducing 73y and unitary evolutions in K

Definition (Belavkin filter)

Denote thp < t1 < tp < ... < t7, with tp the initial time and
(tk)x>1 the instants during which a discrete-time measurement
occurs on the system. We associate to each of them a complete
Kraus set (Kyy), -

Then, the state evolves from pg according to the Belavkin filter:

Ok = Kk,yk (pkfl)
Tr (Kk.y, (Pk-1))

P(yk = 7lpk—1 = p) = Tr(Kky (p))

where px = p(tk)-

We recall that K, (p) = ZI 1 MyipM
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Evolution of diffusive systems

Stochastic Master Equation [Barchielli et Gregoratti, 2009]

Evolution of state p, with respect to diffusive measurement

processes (dyy), <,

i

dp: = H:, p: —i-zn:D,, (pe)| dt
i e |

v=1

+ 30 Vi [Mu (pe) = Tr (M (pe)) pe| Wy
v=1

and the measurement processes dy;’:

dy = VT (M, (p)) dt + WY

Model experimentally validated on a superconducting
qubit [Campagne-lbarcq, PRX 6]
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Evolution of diffusive systems

dp: = [{Ht /)t} + ZD Ot ] dt

v=1

30 VM (o) — T (M (o)) | vy

v=1
yt - \/’/VTr (MI/ ([)t)) dt + d Wé/

@ p: operator of the finite-dimension Hilbert space H, density
matrix, i.e. Tr(p:) =1, pr = pI and p; >0

e H; Hamiltonien operator, zero-trace and Hermitian

e D, Lindblad superoperator:

Dy (p) = Lupl} — (LiLup+ pLiL,) /2
e M, measurement superoperator:

M, (,0) =Lyp+ ,OLL
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Evolution of diffusive systems

. n
dp; = [;} {Ht. /)t} + Z D, (/)t)] dt

v=1

+ 37 Ve | Mo (pe) = Tr (Mo (pe)) pe|dWY
vr=1
dyy = /n,Tr (M, (pr)) dt +dWY

(dWY), independent Wiener processes (independent and
stationary increments, continuous path), verifying:

de’NN(O,\/a), v<n

7, € [0;1]: detection efficiency of measurement v
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Discretization scheme
The Stochastic Master Equation is not linear.

Definition (Discretization scheme)

We provide a discretization scheme of the SME :

KtAYt (pt A)
Tr(Keay, (Pt-a.))

Pt = (Pt‘Pt Ay AYt)

o A;: sampling time of diffusive signals
o Ay = (Ay{),<, and Ay = = A, dye the sampled
measurements

o p— K ay, (p) linear application with Kraus application
structure:

n
Kty (p) = (Nt,Ay)P(Nt,Ay)]L + Z GquiAt
v=1
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Discretization scheme
This scheme has two advantages:

@ it preserves the positivity of the state along a measurement
trajectory

@ it is associated with a probability law:

IF’(VV <nAy" < Ay < AyY+ dy”‘ppAt = p) =

T (Key (9)) % (ﬁ dyv>
v=1
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Discretization scheme

Expression of the scheme

The discretized Kraus application K; ay writes, for any p and
Ay:

A 2
exp (_II 2yll

Keay(p) = m kt,Ay(ztpzD

where:

o Kenay(p) = (Meay)p(Meay) + S0_1(1 = ny)Lypl At
° Mthy = IH + ZZ:]_ nVLl/AyV - CtAt

, t
i n L, L,
o CGi=zH:+> /) 1%

_1
o Ti=[h+ ClG(At?] ?

Thanks to ¢, [pa Tr(Keay(p)) dAyt...dAy™ =1 for any p and
a strictly positive At
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Discretization scheme
Theorem (Convergence in distribution of the discretization scheme)

The discretization scheme defined by:

Pt = KthYt (pt*At)
‘ Tr(KtAYt (pt—At))’

dP (Dye = Ay|pe—a, = p) = Tr(Keay ()

converges in distribution towards the SME, for At tending to
the infinitesimal dt.

Sketch of proof. we show two assumptions
o same first-order generators for both equations: Vf scalar
C?—function and Vp density matrix, the expectancy of
f(pt) — f(pr—nt)
At
converges when At — dt to the value obtained with SME.
o tightness hypothesis 15 /49

over Ay:, assuming pi_ar = p
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Discretization scheme: first-order generators
Concerning the SME, recalling that:

dpe = p(pe, t)dt + Y o (pe, t)AWY
v=1

the first-order generator is computed using the Ito differential
calculus rules:

Af(p) — Edyt (f(pt) - f((iptt—dt = p)> _

Vf‘p .u(pt, t) + = V2f’ (Z [UV p,t UV p7 )])
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Discretization scheme: first-order generators
Concerning the discretization scheme, we simply use expansion

series:
. f e
Bf(ﬂ) = AIt|L>nthAy ( (pt) (Ap; At P)) _
_Keay(p) ) _ _
lim E ' (Tr(Kt,Ay(p))) f(pe—nt = p)
At—dt DY o

N
4

@ the term exp (—M) /(2w At)4 vanishes

o terms of the order Ay?, (AyY)? and dt: we consider K; ay(p)
whose additive structure fits well with expansion series
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Quantum state tomography using MaxLike principle
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Quantum state tomography using MaxLike principle
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MaxLike principle

Definition (Maximum Likelihood)

Using realisations Xi, ..., Xy successively obtained according to
the probability law

fo(xlezé),

the MaxLike estimation of § consists in choosing GAML which
maximizes on the set © the conditional probabilities of X :

O = argmax f (X1,..., Xnl|0)
6co

N
= arg max H f (Xn|0)

0c© n=1

f is called likelihood function.
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oeo
Consistency of Maximum Likelihood

The MaxLike estimation can be biased :
éML(N) = ]EXl,‘..,XN (éML (Xl, 500 ,XN)) 75 @7

but, if © is a compact space, 0 € int (©) (among other properties),
this estimation is consistent :

NE)TOO Ou(N) =6 in probability

Definition (Estimation variance)

Estimation variance o2 (/) of Maximum Likelihood is defined by:
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Maximum Likelihood properties

Cramér-Rao bound
e For any unbiased estimator C, if the likelihood f is a
C2—function w.r.t. 6, and Ex are §%/060? invertible :

> CEx(E ()

This bound does not depend on the estimator C.
@ Maximum Likelihood is asymptotically efficient :

(-2 (g s (r (x17))))

UA%L(N) ~N—+o0 N in prob.

when Ex and 03/063 are locally invertible around 6.
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Quantum state tomography using MaxLike principle
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Likelihood function of measurement trajectories
Likelihood of a measurement trajectory (yi,...,yT), supposing
that po =/ 7

@ Bayes' law gives:

-
P ((Yk)kgT ‘ﬁ) = ! P (}/k P (ys)sgk—l)

k

e Approximated quantum filter initialized with / :

o Ky, (fr-1)
Po=p, Pk= ==,
Tr (Ky, (Pk-1))

P (yi|, (96)szi1) = Tr (Ko, (hi1))

A N

o Linearity of Kraus applications



Quantum state tomography using MaxLike principle
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Likelihood function of measurement trajectories
Likelihood of a measurement trajectory (yi,...,yT), supposing
that pg = p :

P (v ker [7) = Tr(Kyp 0.0 Ky (7))

Adjoint Kraus applications denoted K* [Quantum Smoothing -
Tsang 2009, Past Quantum States - Gammelmark et al., 2013] :

¥ operators A and B, Tr(AK,(B)) = Tr (K} (A)B)
Thus, the likelihood of a trajectory is given by:

P (v uer [p) = Tr (K3, 0.0 K5, (1))

23 /49
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Likelihood function of measurement trajectories: conclusion
Thus, when a physicist have N quantum trajectories at his
disposal, he associates to any trajectory an adjoint state E(") :

K* o KF (]
(n) yl(n) o o y_([_") ( )
Ir | K* oo KF (]

The log-likelihood of the measurement data is then given by:

o (2 (4) .0 7)) = 2 e (7).
- n=1

where C(" is independent from /.
From now on, we use the function g :

prs £() =3 g Te (E97)

n=1
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Quantum state tomography using MaxLike principle
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Optimization

Maximization problem

The goal is to find :

N
pw = arg max g (p) = arg max (Z log Tr (E(”)ﬁ>>
PEDy PEDy  \p—1

@ Dy the set of density operators on H is convex and compact
o the log-likelihood g is strongly concave (iff Vect(E(")
describes the set of Hermitian operators)

=> classical optimization by gradient descent
=> asymptotic development of Cramér-Rao bound around py,

The gradient is easy to implement and can be commputed quickly:

N E(n)

Vg]A = A
P nz::l Tr(E(”)p)



Quantum state tomography using MaxLike principle
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Optimization

Optimality conditions

The density matrix p maximizes the likelihood function
iff [Rouchon and Six, arXiv:1607.00948]:

° Tr(E(")p) >0frl<n<N
° [ﬁa Vg’ﬁj| :ﬁvg‘ﬁ_ ngﬁﬁzo

o there exists A > 0 such that AP = P Vgl and Vgl|; < A,
where P is the orthogonal projector on the range of o
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Quantum state tomography using MaxLike principle
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Maximum Likelihood: estimation variance
P € int(Dy) is equivalent to jy, invertible matrix

Variance of estimation: the invertible case

When py is invertible, the estimation variance of Tr (pA) is
denoted o2 (A) and verifies:

-1
A~ (= T, ) (414D

where ) (
N E n ® E n

w2, —_5 o ®f8

g’ﬁ"/’L ,,gl E(n)ﬁML

tensor of order 2 on Dy.

Eﬁ") =E(M —Tr (E(”)) I/Tr (1) the projection of E(") on the

subspace of zero-trace operators

Results for non-invertible matrices to be published
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Superconducting qubit from LPA group
Two-energy-level system [Campagne-Ibarcq et al., PRX]
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Quantum state tomography using MaxLike principle
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Experimental validations

e H = C?, qubit state in the Bloch sphere
@ 3 channels of measurement

o Li=0_/\V2T1,m=n>0

o Lo=io_/y2T1,nq=n>0

o Ly=0,/\/2T4 ny=0

@ no Hamiltonian operator H;

dpe = [D; (pe) + Do (pt) + Dy (pe)] dt
+ViT[Mi (pe) = Tr (M (pe) pe| AW/

+ViT[Ma (pr) = Tr (M (o)) pe| AW2

dyt{ =4 /2—777_1Tr (prt)dt + th.I

dyQ = 2L7_1Tr (oype) dt +dWR
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Quantum state tomography using MaxLike principle
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Experimental validations
We have at our disposal N = 3.10° outcome trajectories consisting
in T = 47 measurements on / and @ channels.
Sampling time: A; = 200 ns, while:
@ T; =~ 4.15 us the characteristic time of decoherence due to
the measurement

e T, ~ 35 us the characteristic time of decoherence due to the
dephasing
We aim to prepare pg on (1,0,0), but slight imperfections in the
preparation process.
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Quantum state tomography using MaxLike principle
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Experimental validations

We also estimate:
t N Z p(n)

the mean of state values at time t, using:

Pty = arg max H dpP (Aygi)l, . Ay(")
pPEDy n=1

(n) _ ﬁ)

Comparison with the estimation of X; and y, by averaging the

measurement signals:
n
<dy! > =/ xdt
Y 2T, t

<dth>:,/2Tytdt

31/49
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Experimental validations on Z

Estimation de z(t)

Temps (enps)

e red: Maximum Likelihood estimation of z,(t), obtained
using N = 4.10* outcome trajectories

e blue: confidence interval z,(t) & 202 (0,)
32/49
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Experimental validations on X and Y
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e red: Maximum Likelihood estimation of x,(t) and yw(t),
obtained using N = 4.10* outcome trajectories
e blue: confidence interval x,(t) &+ 202 (o) (id. for y)

e points: averaging estimation using N = 3.10% outcome traj.
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Experimental validations on X and Y
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e red: Maximum Likelihood estimation of x, (t) and . (t),
obtained using N = 4.10* outcome trajectories
e blue: confidence interval x,(t) £ 202 (o) (id. for y)

@ points: averaging estimation using N = 4.10% outcome traj.
34 /49



Quantum process tomography usin

Quantum process tomography using MaxLike principle and

particle filters
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Introduction to process tomography

The problem is to estimate the exact parameter value p that
generated the outcome trajectories y(" thanks to the Belavkin
filter

—(n) _ KZ("),y[((") <ﬁ$<,21>

pO = ﬁa pk - _
P —(n)
Tr (Kk("),y,gn) (pk_1)>
P (" =yip A% ) = Tr (KZ, (A1)
@ exact values p and p may not be known

=> consider the approximate filter using p and p
@ stability is measured using fidelity pseudo-metric F:

Flp.p') =/ Ver' Ve €[0:1]

with F (p, p') = 1 equivalent to p and p’ describing the same
physical state.
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A first stability result

Theorem (Stability w.r.t. initial condition, Rouchon et al., IEEE,

2011)
Exact filter (p,p) Approximate filter (p,P)
Po =7 po=p_
Pi = M pr = M
Tr(Ki, (P_1)) Tr(KE,Yk (,{71))

The y, are generated by the exact filter.
Then, at each time k, the fidelity between exact and approximate

states increases in expectancy:

E e

Ey, (F (ﬁkapf> ‘YL soc ’Yk—1> > F (pkflap2_1)

A quantum filter tends to forget its initial condition.
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Problematics
Is it possible to estimate p initializing the filter with approximate

initial state p ?
Is Maximum-Likelihood Principle relevant for that ?

Device with (7, p) generated trajectory (y1,...,yT)

Experimenter knows that p € {a; b}.

Experimenter has to test filters (p, a) and (p, b), with p an
approximate initial state.

@ The measurements are the only information available on p.
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Probability filter

=P P=2a|p, Y1, Yk
We denote: Z ( )
Ty :P<p:bpay17"'7yk)
These probabilities iterate with the following parallel filters, via
Bayes’ law:
Approximate Filter (p, a) | Approximate Filter (p, b)
pg=p, m=m’ po=p mG=T
pla( — Kz,yk(pi—l) pg — Kk,yk(pk—l)
Tr(Ki,yk (pi—1)> Tr(Kz,yk (pi—l))
2 ”iflTr(Ki,yk(pifl)) b Wffle(Kf,yk(/’ffl))
Ty = Cx Ty = Cx

Cx such that 77 + ﬁ,’? =1.

Set p = a. What can we say about 7}, and pj, ?
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Extended density matrices
Extended density matrices = are parallel density matrices that
enclose the uncertainty on the parameter value:

= _ (Tkri| O
ZKk = .
0 | mgrk

(p3,m7) and (pf,ﬂf) are respectively the states of probability

filters (p, a) and (p, b).
= fulfils all the properties of a density matrix.
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Extended Belavkin filter
Thus, the extended state = is iterated thanks to the following

formula:
= _(.mp| O
-0 — 0 770/) ’

i 1Kk (Pi—l) ‘ 0
- 0 ‘ 771[3—1K2,yk (02—1)
T (KL, (01)) T (KR, (h))
This is actually an extended approximate Belavkin filter, as it is
equivalent to = = K<, (Sx-1) /Tr (K‘f(x;‘,k (Zk— )) with K$* a

partial Kraus map containing the extended matrices built from the
ones of Ky and Kly’.
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Exact extended filter
The exact filter corresponding to the real device can be extended
as well. Its initial state writes:

= _ (PO 5 —

Its state is iterated thanks to the same extended Kraus map
(Kext).
v
= = K3, (Sea) /Tr (K23, (2en))

which ensures that:
= _ [P0
—k 0 0 ;

with 7, generated by the exact filter (p,p).
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Stability results
Theorem (Stability to initial condition, Six et al., CDC 2015)

Exact filter (p, a and b) | Approximate filter (p, a and b)

= (p]|0 — [ mp| O
=2~ \ oo )’ 2=\ 0 |7

= Ki)j,k(ék—l) S Kix,;k(zk—l)

Tr<Kzf;k (EH)) Tr<Kzf;k(zk,1)>

The yy are generated by the exact filter.
Thus, ©3F (py, p}) is a sub-martingale.

By, (72F (Pe 02) |Zh1,Zk1) = 7E1F (Pecrs Pio)

Furthermore, if the initial condition p = p, it becomes:

al— - a
Ey, (Wk :kflazkfl) > Tr_1
B3 /49
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Experimental validations

e H = C?, qubit state in the Bloch sphere
@ 3 channels of measurement

o Li=0_/\V2T1,m=n>0

o Lo=io_/y2T1,nq=n>0

o Ly=0,/\/2T4 ny=0

@ no Hamiltonian operator H;

dpe = [D; (pe) + Do (pt) + Dy (pe)] dt
+ViT[Mi (pe) = Tr (M (pe) pe| AW/

+ViT[Ma (pr) = Tr (M (o)) pe| AW2

dyt{ =4 /2—777_1Tr (prt)dt + th.I

dyQ = 2L7_1Tr (oype) dt +dWR
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Experimental validations
Now, we want to estimate the detection efficiency 7.
@ Preliminary calibration shows that 77 = 0.26 + 0.02
o Still use of N = 3.10° outcome trajectories of T = 50
measurements on / and @ channels
@ Same sampling period and measurement/decoherence
damping times
o Initial state around (/i + 0x) /2 to maximize the information
onn
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Experimental Validation on a Superconducting Qubit

=01
=04
EEH
0.2
O Py
0 500 1000 1500 2000

Number of Trajectories

46 /49



Quantum process tomography usin
[sIeYe] Tole}

Experimental Validation on a Superconducting Qubit
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Experimental Validation on a Superconducting Qubit

Bl -0.23
[ In=0.235
[ In=0.24
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0 0.5 1 1.5 2 2.5 3
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Outline of other works

@ direct optimization for multi-dimensional parametric
estimation: use of adjoint method

For LKB photon box, simultaneous estimation of 32
parameters in measurement matrices

@ results on MaxLike estimation variance when j,, is not
invertible

@ link with the Bayesian Mean Estimation
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