Estimation of low-rank states by random measurements

Jonas KAHN
Cristina Butucea, Mădălin Guță

Toulouse
January 24th, 2016

Compressed sensing

Unknown parameter in dimension d Sparse

Compressed sensing

Unknown parameter in dimension d Sparse : belongs to a subspace of dimension s

Compressed sensing

Unknown parameter in dimension d Sparse : belongs to a subspace of dimension s We need (about) s measurements to find the parameter.

Estimation of low-rank matrices

- Unknown matrix A in $\mathbb{R}^{p_{1}+p_{2}}$, rank r.
- Measurements $y_{i}=\operatorname{Tr}\left(X_{i} A\right)+z$, where X_{i} chosen and z Gaussian noise.

Estimation of low-rank matrices

- Unknown matrix A in $\mathbb{R}^{p_{1}+p_{2}}$, rank r. We need $r\left(p_{1}+p_{2}\right)$ numbers to describe it.
- Measurements $y_{i}=\operatorname{Tr}\left(X_{i} A\right)+z$, where X_{i} chosen and z Gaussian noise.

Estimation of low-rank matrices

- Unknown matrix A in $\mathbb{R}^{p_{1}+p_{2}}$, rank r. We need $r\left(p_{1}+p_{2}\right)$ numbers to describe it.
- Measurements $y_{i}=\operatorname{Tr}\left(X_{i} A\right)+z$, where X_{i} chosen and z Gaussian noise.

Theorem (Candès and Plan)

If the X_{i} have independent Gaussian entries, we may rebuild A with about $r\left(p_{1}+p_{2}\right)$ measurements.

Estimation of low-rank matrices

- Unknown matrix A in $\mathbb{R}^{p_{1}+p_{2}}$, rank r. We need $r\left(p_{1}+p_{2}\right)$ numbers to describe it.
- Measurements $y_{i}=\operatorname{Tr}\left(X_{i} A\right)+z$, where X_{i} chosen and z Gaussian noise.

Theorem (Candès and Plan)

If the X_{i} have independent Gaussian entries, we may rebuild A with about $r\left(p_{1}+p_{2}\right)$ measurements.

Theorem (Cai and Zhang)
If the $X_{i}=f_{i}^{*} g_{i}$ are rank-one with f_{i} and g_{i} having independent
Gaussian entries, we may rebuild A with about $r\left(p_{1}+p_{2}\right)$
measurements.

Quantum setting

State
Density matrix $\rho \in M_{d}(\mathbb{C})$, non-negative, with trace 1 .
Positive Operator-Valued Measure (POVM)
A measure with results in $(\mathcal{X}, \mathcal{A})$ is a set $\{M(A)\}_{A \in \mathcal{A}}$ of positive operators that are :

Positive $M(A) \geq 0$
Normalised $M(\mathcal{X})=\mathbf{1}_{\mathcal{H}}$
Countably additive $M\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} M\left(A_{i}\right)$ for all disjoint A_{i}
The $M(A)$ are called POVM elements.
Result of a measurement
The law of the result X of the measurement M applied to X the state ρ is

$$
\mathbb{P}[X \in A]=\operatorname{Tr}[\rho M(A)]
$$

Schatten norms

For symmetric matrices and $1 \leq p \leq \infty$, the Schatten p-norm $\|\cdot\|_{p}$ is given by

$$
\|A\|_{p}^{p}=\sum_{m}\left|\lambda_{m}(A)\right|^{p}
$$

where the $\lambda_{m}(A)$ are the eigenvalues of A.
In particular, the Schatten 1-norm is the trace norm, the 2-norm is the Frobenius norm and the ∞-norm is the spectral norm.

Density matrices as classical mixture

For any set $\vec{\lambda}=\left\{\lambda_{m}\right\}_{1 \leq m \leq r}$ such that :

- $\lambda_{m}>0$ for all i,
- $\sum \lambda_{m}=1$,
we may consider the set of density matrices in $M_{d}(\mathbb{C})$ with those non-zero eigenvalues :

$$
\mathcal{S}_{d, \vec{\lambda}}=\left\{\rho \in M_{d}(\mathbb{C}): \lambda_{m}(\rho)=\lambda_{m} \delta_{m \leq r}\right\} .
$$

In particular r is the rank of ρ.

Density matrices as classical mixture

For any set $\vec{\lambda}=\left\{\lambda_{m}\right\}_{1 \leq m \leq r}$ such that :

- $\lambda_{m}>0$ for all i,
- $\sum \lambda_{m}=1$,
we may consider the set of density matrices in $M_{d}(\mathbb{C})$ with those non-zero eigenvalues :

$$
\mathcal{S}_{d, \vec{\lambda}}=\left\{\rho \in M_{d}(\mathbb{C}): \lambda_{m}(\rho)=\lambda_{m} \delta_{m \leq r}\right\} .
$$

In particular r is the rank of ρ. Moreover,

$$
\rho=\sum_{m} \lambda_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|
$$

where the $\left|\phi_{m}\right\rangle$ are the eigenvectors of ρ.

Density matrices as classical mixture II

Measuring ρ with POVM M is equivalent to :

1. Choose m according to the probability distribution $\vec{\lambda}$.
2. Measure $\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|$ with POVM M.
3. Forget m.

Lower bound on estimation of low-rank quantum states

Proposition

Suppose we have n copies of a state $\rho \in \mathcal{S}_{d, \vec{\lambda}}$. For any estimator $\hat{\rho}$, the worst-case error has the lower bound :

$$
\inf _{\hat{\rho}} \sup _{\rho \in \mathcal{S}_{d, \vec{\lambda}}} \mathbb{E}_{\rho}\left[\|\hat{\rho}-\rho\|_{p}\right] \geq C_{p} \sqrt{\frac{d}{n}}\left(\sum \lambda_{m}^{p / 2}\right)^{1 / p} .
$$

Lower bound on estimation of low-rank quantum states

Proposition

Suppose we have n copies of a state $\rho \in \mathcal{S}_{d, \vec{\lambda}}$. For any estimator $\hat{\rho}$, the worst-case error has the lower bound :

$$
\inf _{\hat{\rho}} \sup _{\rho \in \mathcal{S}_{d, \vec{\lambda}}} \mathbb{E}_{\rho}\left[\|\hat{\rho}-\rho\|_{p}\right] \geq C_{p} \sqrt{\frac{d}{n}}\left(\sum \lambda_{m}^{p / 2}\right)^{1 / p}
$$

In particular, the corresponding lower bound on all rank r matrices is proportional to :
Trace norm $\sqrt{\frac{r d}{n}}$
Frobenius norm $\sqrt{\frac{d}{n}}$, not depending on $\vec{\lambda}$.
Spectral norm $\sqrt{\frac{d}{n}}$.

Totally random measurement

Definitions

1. Choose an orthonormal basis of \mathbb{C}^{d} uniformly at random
2. Use the projection measurement in that basis

Totally random measurement

Definitions

1. Choose an orthonormal basis of \mathbb{C}^{d} uniformly at random
2. Use the projection measurement in that basis

Equivalently, the POVM of the totally random measurement is given by the POVM with values in the pure states and

$$
M(A)=\int_{A}|\psi\rangle\langle\psi| \mathrm{d} \mu(\psi)
$$

where μ is the Haar measure on the set of pure states (the projective space).

Totally random measurement

Definitions

1. Choose an orthonormal basis of \mathbb{C}^{d} uniformly at random
2. Use the projection measurement in that basis

Equivalently, the POVM of the totally random measurement is given by the POVM with values in the pure states and

$$
M(A)=\int_{A}|\psi\rangle\langle\psi| \mathrm{d} \mu(\psi)
$$

where μ is the Haar measure on the set of pure states (the projective space).

The result of the measurement is a rank-one state $|\psi\rangle\langle\psi|$.

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\langle e|$. By symmetry, the result of the totally random measurement on ρ has expectation

$$
\begin{aligned}
\mathbb{E}_{e}[|\psi\rangle\langle\psi|] & =\alpha|e\rangle\langle e|+\beta \mathbf{1} \\
& =\alpha \rho+\beta \mathbf{1}
\end{aligned}
$$

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\langle e|$.
By symmetry, the result of the totally random measurement on ρ has expectation

$$
\begin{aligned}
\mathbb{E}_{e}[|\psi\rangle\langle\psi|] & =\alpha|e\rangle\langle e|+\beta \mathbf{1} \\
& =\alpha \rho+\beta \mathbf{1}
\end{aligned}
$$

By linearity, the formula is still true if ρ is not rank-one.

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\langle e|$.
By symmetry, the result of the totally random measurement on ρ has expectation

$$
\begin{aligned}
\mathbb{E}_{e}[|\psi\rangle\langle\psi|] & =\alpha|e\rangle\langle e|+\beta \mathbf{1} \\
& =\alpha \rho+\beta \mathbf{1}
\end{aligned}
$$

By linearity, the formula is still true if ρ is not rank-one.
Calculations yield

$$
\mathbb{E}_{\rho}[|\psi\rangle\langle\psi|]=\frac{1}{d+1}(\rho+\mathbf{1})
$$

Totally random measurement III

- We have n copies of ρ.
- We measure each of them with the TRM.
- We get the results $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ for $i \leq n$.

Recall

$$
\mathbb{E}_{\rho}[|\psi\rangle\langle\psi|]=\frac{1}{d+1}(\rho+\mathbf{1}) .
$$

Natural estimator of ρ

$$
\hat{\rho}=\quad \frac{d+1}{n} \sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-1
$$

Totally random measurement III

- We have n copies of ρ.
- We measure each of them with the TRM.
- We get the results $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ for $i \leq n$.

Recall

$$
\mathbb{E}_{\rho}[|\psi\rangle\langle\psi|]=\frac{1}{d+1}(\rho+\mathbf{1}) .
$$

Natural estimator of ρ

$$
\hat{\rho}=\Pi_{\mathcal{S}}\left[\frac{d+1}{n} \sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-1\right]
$$

Totally random measurement III

- We have n copies of ρ.
- We measure each of them with the TRM.
- We get the results $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ for $i \leq n$.

Recall

$$
\mathbb{E}_{\rho}[|\psi\rangle\langle\psi|]=\frac{1}{d+1}(\rho+\mathbf{1}) .
$$

Natural estimator of ρ

$$
\begin{aligned}
\hat{\rho} & =\Pi_{\mathcal{S}}\left[\frac{d+1}{n} \sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\mathbf{1}\right] \\
& =\left[\frac{d+1}{n} \sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\alpha \mathbf{1}\right]_{+}
\end{aligned}
$$

Totally random measurement estimator

Theorem
If $\rho \in \mathcal{S}_{d, r}$, then the risk of the totally random measurement procedure is bounded from above by :

$$
\mathbb{E}_{\rho}\left[\|\hat{\rho}-\rho\|_{p}\right] \leq C_{p} r^{\frac{1}{\rho}} \sqrt{\frac{d}{n}}
$$

Totally random measurement estimator

Theorem
If $\rho \in \mathcal{S}_{d, r}$, then the risk of the totally random measurement procedure is bounded from above by :

$$
\mathbb{E}_{\rho}\left[\|\hat{\rho}-\rho\|_{p}\right] \leq C_{p} r^{\frac{1}{\rho}} \sqrt{\frac{d}{n}}
$$

In particular, it is minimax optimal for the Frobenius norm, up to a constant.

Proof

Write $X_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\frac{1}{d+1}(\rho+1)$.

Proof

Write $X_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\frac{1}{d+1}(\rho+1)$. Then

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad R=\frac{d+1}{n} \sum X_{i} .
$$

Proof

Write $X_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\frac{1}{d+1}(\rho+1)$. Then

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad R=\frac{d+1}{n} \sum X_{i} .
$$

Concentration inequality by Tropp
If X_{i} are independent centered Hermitian matrices with $\left\|X_{i}\right\|_{\infty} \leq W$ and $\left\|\mathbb{E}\left[\sum X_{i}^{2}\right]_{\infty}\right\|<V$, then for all $t>0$:

$$
\mathbb{P}\left[\left\|\sum X_{i}\right\|_{\infty} \geq t\right] \leq 2 d \exp \left(-\frac{t^{2} / 2}{V+t W / 3}\right)
$$

Proof

Write $X_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\frac{1}{d+1}(\rho+1)$. Then

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad R=\frac{d+1}{n} \sum X_{i} .
$$

Concentration inequality by Tropp
If X_{i} are independent centered Hermitian matrices with $\left\|X_{i}\right\|_{\infty} \leq W$ and $\left\|\mathbb{E}\left[\sum X_{i}^{2}\right]_{\infty}\right\|<V$, then for all $t>0$:

$$
\mathbb{P}\left[\left\|\sum X_{i}\right\|_{\infty} \geq t\right] \leq 2 d \exp \left(-\frac{t^{2} / 2}{V+t W / 3}\right)
$$

Here $W=1$ and $V=2 / d$. Hence

$$
\mathbb{E}\left[\|R\|_{\infty}\right] \leq C \sqrt{\frac{d}{n}} .
$$

Proof II

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad \mathbb{E}\left[\|R\|_{\infty}\right] \leq C \sqrt{\frac{d}{n}} .
$$

Proof II

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad \mathbb{E}\left[\|R\|_{\infty}\right] \leq C \sqrt{\frac{d}{n}}
$$

Since ρ has rank r, the error $\rho-\hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$
\|\hat{\rho}-\rho\|_{1} \leq 2 r\|\hat{\rho}-\rho\|_{\infty} .
$$

Proof II

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad \mathbb{E}\left[\|R\|_{\infty}\right] \leq C \sqrt{\frac{d}{n}} .
$$

Since ρ has rank r, the error $\rho-\hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$
\|\hat{\rho}-\rho\|_{1} \leq 2 r\|\hat{\rho}-\rho\|_{\infty} .
$$

By interpolation,

$$
\|\hat{\rho}-\rho\|_{p} \leq C_{p} r^{1 / p} \sqrt{\frac{d}{n}} .
$$

Proof II

$$
\hat{\rho}=\Pi_{\mathcal{S}}[\rho+R], \quad \mathbb{E}\left[\|R\|_{\infty}\right] \leq C \sqrt{\frac{d}{n}}
$$

Since ρ has rank r, the error $\rho-\hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$
\|\hat{\rho}-\rho\|_{1} \leq 2 r\|\hat{\rho}-\rho\|_{\infty} .
$$

By interpolation,

$$
\|\hat{\rho}-\rho\|_{p} \leq C_{p} r^{1 / p} \sqrt{\frac{d}{n}}
$$

Stability to perturbations

$$
\|\hat{\rho}-\rho\|_{p} \leq C_{p}\left(r+\sum_{i>r} \lambda_{i}(\rho) \sqrt{\frac{n}{d}}\right)^{1 / p} \sqrt{\frac{d}{n}} .
$$

Perspectives: multiple ions

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

Perspectives: multiple ions

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

Typical case
$\rho \in M_{2 b}(\mathbb{C})$ is the state of b qubits. Each qubit is measured individually using a Pauli observable. Easy.

Perspectives: multiple ions

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

Typical case
$\rho \in M_{2 b}(\mathbb{C})$ is the state of b qubits. Each qubit is measured individually using a Pauli observable. Easy.
Do we get the same speeds?

Perspectives : multiple ions II

Theorem (Xia, Koltchinskii ; Cai et al.)
$E_{1}, \ldots, E_{d^{2}}$ basis of the Hilbert space $M_{d}(\mathbb{C})$. Data is $\operatorname{Tr}\left(\rho E_{i}\right)+\xi_{i}$. The squared minimax rate in Frobenius norm is $d^{2} / n=4^{b} / n$.

Perspectives: multiple ions II

Theorem (Xia, Koltchinskii ; Cai et al.)
$E_{1}, \ldots, E_{d^{2}}$ basis of the Hilbert space $M_{d}(\mathbb{C})$. Data is $\operatorname{Tr}\left(\rho E_{i}\right)+\xi_{i}$. The squared minimax rate in Frobenius norm is $d^{2} / n=4^{b} / n$.
Theorem (Butucea, Guță, Kypraios)
For real quantum Pauli measurements, the squared estimation rate is bounded from above by $3^{b} / n$.

Perspectives: multiple ions II

Theorem (Xia, Koltchinskii ; Cai et al.)
$E_{1}, \ldots, E_{d^{2}}$ basis of the Hilbert space $M_{d}(\mathbb{C})$. Data is $\operatorname{Tr}\left(\rho E_{i}\right)+\xi_{i}$. The squared minimax rate in Frobenius norm is $d^{2} / n=4^{b} / n$.

Theorem (Butucea, Guță, Kypraios)

For real quantum Pauli measurements, the squared estimation rate is bounded from above by $3^{b} / n$.
The Fisher information of the measurement on a relevant subspace would yield a $2^{b} / n$ bound.

Questions?

Thank you!

