Estimation of low-rank states by random measurements

Jonas KAHN Cristina Butucea, Mădălin Guță

> Toulouse January 24th, 2016

Compressed sensing

Unknown parameter in dimension *d* Sparse

Compressed sensing

Unknown parameter in dimension dSparse : belongs to a subspace of dimension s

Compressed sensing

Unknown parameter in dimension *d* Sparse : belongs to a subspace of dimension *s* We need (about) *s* measurements to find the parameter.

- Unknown matrix A in $\mathbb{R}^{p_1+p_2}$, rank r.
- Measurements $y_i = \text{Tr}(X_iA) + z$, where X_i chosen and z Gaussian noise.

- ► Unknown matrix A in ℝ^{p1+p2}, rank r. We need r(p1 + p2) numbers to describe it.
- ► Measurements y_i = Tr(X_iA) + z, where X_i chosen and z Gaussian noise.

- ► Unknown matrix A in ℝ^{p1+p2}, rank r. We need r(p1 + p2) numbers to describe it.
- ► Measurements y_i = Tr(X_iA) + z, where X_i chosen and z Gaussian noise.

Theorem (Candès and Plan)

If the X_i have independent Gaussian entries, we may rebuild A with about $r(p_1 + p_2)$ measurements.

- ► Unknown matrix A in ℝ^{p1+p2}, rank r. We need r(p1 + p2) numbers to describe it.
- ► Measurements y_i = Tr(X_iA) + z, where X_i chosen and z Gaussian noise.

Theorem (Candès and Plan)

If the X_i have independent Gaussian entries, we may rebuild A with about $r(p_1 + p_2)$ measurements.

Theorem (Cai and Zhang)

If the $X_i = f_i^* g_i$ are rank-one with f_i and g_i having independent Gaussian entries, we may rebuild A with about $r(p_1 + p_2)$ measurements.

Quantum setting

State

Density matrix $\rho \in M_d(\mathbb{C})$, non-negative, with trace 1.

Positive Operator-Valued Measure (POVM)

A measure with results in $(\mathcal{X}, \mathcal{A})$ is a set $\{M(A)\}_{A \in \mathcal{A}}$ of positive operators that are :

Positive $M(A) \ge 0$

Normalised $M(\mathcal{X}) = \mathbf{1}_{\mathcal{H}}$

Countably additive $M(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} M(A_i)$ for all disjoint A_i The M(A) are called POVM elements.

Result of a measurement

The law of the result X of the measurement **M** applied to X the state ρ is

$$\mathbb{P}\left[X\in A\right]=\mathsf{Tr}[\rho M(A)].$$

For symmetric matrices and $1 \leq p \leq \infty,$ the Schatten $p\text{-norm } \left\|\cdot\right\|_p$ is given by

$$\|A\|_p^p = \sum_m |\lambda_m(A)|^p,$$

where the $\lambda_m(A)$ are the eigenvalues of A.

In particular, the Schatten 1-norm is the trace norm, the 2-norm is the Frobenius norm and the ∞ -norm is the spectral norm.

Density matrices as classical mixture

For any set
$$\vec{\lambda} = \{\lambda_m\}_{1 \le m \le r}$$
 such that :
 $\lambda_m > 0$ for all i ,
 $\sum \lambda_m = 1$,

we may consider the set of density matrices in $M_d(\mathbb{C})$ with those non-zero eigenvalues :

$$\mathcal{S}_{d,\vec{\lambda}} = \{ \rho \in M_d(\mathbb{C}) : \lambda_m(\rho) = \lambda_m \delta_{m \leq r} \} \,.$$

In particular r is the rank of ρ .

Density matrices as classical mixture

For any set
$$\vec{\lambda} = \{\lambda_m\}_{1 \le m \le r}$$
 such that :
 $\lambda_m > 0$ for all i ,
 $\sum \lambda_m = 1$,

we may consider the set of density matrices in $M_d(\mathbb{C})$ with those non-zero eigenvalues :

$$\mathcal{S}_{d,\vec{\lambda}} = \{ \rho \in M_d(\mathbb{C}) : \lambda_m(\rho) = \lambda_m \delta_{m \leq r} \} \,.$$

In particular r is the rank of ρ . Moreover,

$$\rho = \sum_{m} \lambda_{m} \left| \phi_{m} \right\rangle \left\langle \phi_{m} \right|$$

where the $|\phi_m\rangle$ are the eigenvectors of ρ .

Density matrices as classical mixture II

Measuring ρ with POVM M is equivalent to :

- 1. Choose *m* according to the probability distribution $\vec{\lambda}$.
- 2. Measure $|\phi_m\rangle \langle \phi_m|$ with POVM *M*.
- 3. Forget *m*.

Lower bound on estimation of low-rank quantum states

Proposition

Suppose we have n copies of a state $\rho \in S_{d,\vec{\lambda}}$. For any estimator $\hat{\rho}$, the worst-case error has the lower bound :

$$\inf_{\hat{\rho}} \sup_{\rho \in \mathcal{S}_{d,\vec{\lambda}}} \mathbb{E}_{\rho} \left[\left\| \hat{\rho} - \rho \right\|_{\rho} \right] \geq C_{\rho} \sqrt{\frac{d}{n}} \left(\sum \lambda_{m}^{\rho/2} \right)^{1/\rho}$$

•

Lower bound on estimation of low-rank quantum states

Proposition

Suppose we have n copies of a state $\rho \in S_{d,\vec{\lambda}}$. For any estimator $\hat{\rho}$, the worst-case error has the lower bound :

$$\inf_{\hat{\rho}} \sup_{\rho \in \mathcal{S}_{\boldsymbol{d},\vec{\lambda}}} \mathbb{E}_{\rho} \left[\left\| \hat{\rho} - \rho \right\|_{\boldsymbol{p}} \right] \geq C_{\boldsymbol{p}} \sqrt{\frac{d}{n}} \left(\sum \lambda_{m}^{\boldsymbol{p}/2} \right)^{1/\boldsymbol{p}}$$

In particular, the corresponding lower bound on all rank r matrices is proportional to :

Trace norm
$$\sqrt{\frac{rd}{n}}$$

Frobenius norm $\sqrt{\frac{d}{n}}$, not depending on $\vec{\lambda}$.
Spectral norm $\sqrt{\frac{d}{n}}$.

Totally random measurement

Definitions

- 1. Choose an orthonormal basis of \mathbb{C}^d uniformly at random
- 2. Use the projection measurement in that basis

Totally random measurement

Definitions

- 1. Choose an orthonormal basis of \mathbb{C}^d uniformly at random
- 2. Use the projection measurement in that basis

Equivalently, the POVM of the totally random measurement is given by the POVM with values in the pure states and

$$M(A) = \int_{A} \ket{\psi} \langle \psi \ket{\mathrm{d}} \mu(\psi),$$

where μ is the Haar measure on the set of pure states (the projective space).

Totally random measurement

Definitions

- 1. Choose an orthonormal basis of \mathbb{C}^d uniformly at random
- 2. Use the projection measurement in that basis

Equivalently, the POVM of the totally random measurement is given by the POVM with values in the pure states and

$$M(A) = \int_{A} \ket{\psi} \langle \psi \ket{\mathrm{d}} \mu(\psi),$$

where μ is the Haar measure on the set of pure states (the projective space).

The result of the measurement is a rank-one state $|\psi\rangle \langle \psi|$.

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\,\langle e|.$ By symmetry, the result of the totally random measurement on ρ has expectation

$$\mathbb{E}_{e}\left[\left|\psi\right\rangle\left\langle\psi\right|\right] = \alpha\left|e\right\rangle\left\langle e\right| + \beta\mathbf{1}$$
$$= \alpha\rho + \beta\mathbf{1}$$

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\,\langle e|.$ By symmetry, the result of the totally random measurement on ρ has expectation

$$\mathbb{E}_{\boldsymbol{e}}\left[\left|\psi\right\rangle\left\langle\psi\right|\right] = \alpha\left|\boldsymbol{e}\right\rangle\left\langle\boldsymbol{e}\right| + \beta\mathbf{1}$$
$$= \alpha\rho + \beta\mathbf{1}$$

By linearity, the formula is still true if ρ is not rank-one.

Totally random measurement II

Suppose that the state ρ is a pure state $|e\rangle\,\langle e|.$ By symmetry, the result of the totally random measurement on ρ has expectation

$$\mathbb{E}_{\boldsymbol{e}}\left[\left|\psi\right\rangle\left\langle\psi\right|\right] = \alpha\left|\boldsymbol{e}\right\rangle\left\langle\boldsymbol{e}\right| + \beta\mathbf{1}$$
$$= \alpha\rho + \beta\mathbf{1}$$

By linearity, the formula is still true if ρ is not rank-one. Calculations yield

$$\mathbb{E}_{
ho}\left[\ket{\psi}ra{\psi}
ight]=rac{1}{d+1}\left(
ho+1
ight).$$

Totally random measurement III

- We have *n* copies of ρ .
- We measure each of them with the TRM.
- We get the results $|\psi_i\rangle \langle \psi_i|$ for $i \leq n$.

Recall

$$\mathbb{E}_{
ho}\left[\ket{\psi}ig\langle\psi
ight] = rac{1}{d+1}\left(
ho+1
ight).$$

Natural estimator of ρ

$$\hat{
ho} = rac{d+1}{n}\sum \ket{\psi_i}ra{\psi_i}-1$$

Totally random measurement III

- We have *n* copies of ρ .
- We measure each of them with the TRM.
- We get the results $|\psi_i\rangle \langle \psi_i|$ for $i \leq n$.

Recall

$$\mathbb{E}_{
ho}\left[\ket{\psi}ig\langle\psi
ight] = rac{1}{d+1}\left(
ho+1
ight).$$

Natural estimator of ρ

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\frac{d+1}{n} \sum |\psi_i\rangle \langle \psi_i| - \mathbf{1} \right]$$

Totally random measurement III

- We have *n* copies of ρ .
- We measure each of them with the TRM.
- We get the results $|\psi_i\rangle \langle \psi_i|$ for $i \leq n$.

Recall

$$\mathbb{E}_{
ho}\left[\ket{\psi}ig\langle\psi
ight] = rac{1}{d+1}\left(
ho+1
ight).$$

Natural estimator of ρ

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\frac{d+1}{n} \sum |\psi_i\rangle \langle \psi_i| - \mathbf{1} \right]$$
$$= \left[\frac{d+1}{n} \sum |\psi_i\rangle \langle \psi_i| - \alpha \mathbf{1} \right]_+$$

Totally random measurement estimator

Theorem

If $\rho \in S_{d,r}$, then the risk of the totally random measurement procedure is bounded from above by :

$$\mathbb{E}_{\rho}\left[\left\|\hat{\rho}-\rho\right\|_{\rho}\right] \leq C_{\rho}r^{\frac{1}{p}}\sqrt{\frac{d}{n}}.$$

Totally random measurement estimator

Theorem

If $\rho \in S_{d,r}$, then the risk of the totally random measurement procedure is bounded from above by :

$$\mathbb{E}_{\rho}\left[\left\|\hat{\rho}-\rho\right\|_{\rho}\right] \leq C_{\rho}r^{\frac{1}{p}}\sqrt{\frac{d}{n}}.$$

In particular, it is minimax optimal for the Frobenius norm, up to a constant.

Write
$$X_i = |\psi_i\rangle \langle \psi_i| - \frac{1}{d+1} (\rho + 1).$$

Write
$$X_i = |\psi_i\rangle \langle \psi_i| - \frac{1}{d+1} (\rho + 1)$$
. Then
 $\hat{\rho} = \prod_{\mathcal{S}} [\rho + R], \qquad \qquad R = \frac{d+1}{n} \sum X_i.$

Write
$$X_i = |\psi_i\rangle \langle \psi_i| - \frac{1}{d+1} (\rho + 1)$$
. Then
 $\hat{\rho} = \prod_{\mathcal{S}} [\rho + R], \qquad \qquad R = \frac{d+1}{n} \sum X_i.$

Concentration inequality by Tropp

If X_i are independent centered Hermitian matrices with $\|X_i\|_{\infty} \leq W$ and $\left\|\mathbb{E}\left[\sum X_i^2\right]_{\infty}\right\| < V$, then for all t > 0:

$$\mathbb{P}\left[\left\|\sum X_i\right\|_{\infty} \geq t\right] \leq 2d \exp\left(-\frac{t^2/2}{V+tW/3}\right).$$

Write
$$X_i = |\psi_i\rangle \langle \psi_i| - \frac{1}{d+1}(\rho + 1)$$
. Then
 $\hat{\rho} = \prod_{\mathcal{S}} [\rho + R], \qquad \qquad R = \frac{d+1}{n} \sum X_i.$

Concentration inequality by Tropp

If X_i are independent centered Hermitian matrices with $\|X_i\|_{\infty} \leq W$ and $\left\|\mathbb{E}\left[\sum X_i^2\right]_{\infty}\right\| < V$, then for all t > 0:

$$\mathbb{P}\left[\left\|\sum X_i\right\|_{\infty} \geq t\right] \leq 2d \exp\left(-\frac{t^2/2}{V+tW/3}\right).$$

Here W = 1 and V = 2/d. Hence

$$\mathbb{E}\left[\left\|R\right\|_{\infty}\right] \leq C\sqrt{\frac{d}{n}}.$$

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\rho + R \right], \qquad \qquad \mathbb{E} \left[\left\| R \right\|_{\infty} \right] \le C \sqrt{\frac{d}{n}}.$$

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\rho + R \right], \qquad \qquad \mathbb{E} \left[\left\| R \right\|_{\infty} \right] \leq C \sqrt{\frac{d}{n}}.$$

Since ρ has rank r, the error $\rho-\hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$\|\hat{\rho} - \rho\|_{1} \le 2r \|\hat{\rho} - \rho\|_{\infty}.$$

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\rho + R \right], \qquad \qquad \mathbb{E} \left[\left\| R \right\|_{\infty} \right] \leq C \sqrt{\frac{d}{n}}.$$

Since ρ has rank r, the error $\rho-\hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$\|\hat{\rho} - \rho\|_{1} \le 2r \|\hat{\rho} - \rho\|_{\infty}.$$

By interpolation,

$$\|\hat{\rho}-\rho\|_{p} \leq C_{p}r^{1/p}\sqrt{\frac{d}{n}}.$$

$$\hat{\rho} = \Pi_{\mathcal{S}} \left[\rho + R \right], \qquad \qquad \mathbb{E} \left[\left\| R \right\|_{\infty} \right] \le C \sqrt{\frac{d}{n}}.$$

Since ρ has rank r, the error $\rho - \hat{\rho}$ has at most r positive eigenvalues. The error has trace zero. So that :

$$\|\hat{\rho} - \rho\|_{1} \le 2r \|\hat{\rho} - \rho\|_{\infty}.$$

By interpolation,

$$\|\hat{\rho}-\rho\|_{p} \leq C_{p}r^{1/p}\sqrt{\frac{d}{n}}.$$

Stability to perturbations

$$\|\hat{\rho}-\rho\|_{p} \leq C_{p} \left(r+\sum_{i>r}\lambda_{i}(\rho)\sqrt{\frac{n}{d}}\right)^{1/p}\sqrt{\frac{d}{n}}.$$

Perspectives : multiple ions

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

Typical case

 $\rho \in M_{2^b}(\mathbb{C})$ is the state of *b* qubits. Each qubit is measured individually using a Pauli observable. Easy.

If our state ρ is multipartite, then the TRM is a collective measurement. Hard.

Typical case

 $\rho \in M_{2^b}(\mathbb{C})$ is the state of *b* qubits. Each qubit is measured individually using a Pauli observable. Easy.

Do we get the same speeds?

Perspectives : multiple ions II

Theorem (Xia, Koltchinskii; Cai et al.)

 E_1, \ldots, E_{d^2} basis of the Hilbert space $M_d(\mathbb{C})$. Data is $\text{Tr}(\rho E_i) + \xi_i$. The squared minimax rate in Frobenius norm is $d^2/n = 4^b/n$.

Theorem (Xia, Koltchinskii; Cai et al.)

 E_1, \ldots, E_{d^2} basis of the Hilbert space $M_d(\mathbb{C})$. Data is $\text{Tr}(\rho E_i) + \xi_i$. The squared minimax rate in Frobenius norm is $d^2/n = 4^b/n$.

Theorem (Butucea, Guță, Kypraios)

For real quantum Pauli measurements, the squared estimation rate is bounded from above by $3^b/n$.

Theorem (Xia, Koltchinskii; Cai et al.)

 E_1, \ldots, E_{d^2} basis of the Hilbert space $M_d(\mathbb{C})$. Data is $\text{Tr}(\rho E_i) + \xi_i$. The squared minimax rate in Frobenius norm is $d^2/n = 4^b/n$.

Theorem (Butucea, Guță, Kypraios)

For real quantum Pauli measurements, the squared estimation rate is bounded from above by $3^b/n$.

The Fisher information of the measurement on a relevant subspace would yield a $2^{b}/n$ bound.

Thank you!