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Compressed sensing

Unknown parameter in dimension d
Sparse

: belongs to a subspace of dimension s
We need (about) s measurements to find the parameter.
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Estimation of low-rank matrices

I Unknown matrix A in Rp1+p2 , rank r .

We need r(p1 + p2)
numbers to describe it.

I Measurements yi = Tr(XiA) + z , where Xi chosen and z
Gaussian noise.

Theorem (Candès and Plan)
If the Xi have independent Gaussian entries, we may rebuild A with
about r(p1 + p2) measurements.

Theorem (Cai and Zhang)
If the Xi = f ∗i gi are rank-one with fi and gi having independent
Gaussian entries, we may rebuild A with about r(p1 + p2)
measurements.
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Quantum setting

State
Density matrix ρ ∈ Md (C), non-negative, with trace 1.

Positive Operator-Valued Measure (POVM)
A measure with results in (X ,A) is a set {M(A)}A∈A of positive
operators that are :

Positive M(A) ≥ 0
Normalised M(X ) = 1H

Countably additive M(
⋃

i∈N Ai ) =
∑

i∈N M(Ai ) for all disjoint Ai

The M(A) are called POVM elements.

Result of a measurement
The law of the result X of the measurement M applied to X the
state ρ is

P [X ∈ A] = Tr[ρM(A)].



Schatten norms

For symmetric matrices and 1 ≤ p ≤ ∞, the Schatten p-norm ‖·‖p
is given by

‖A‖pp =
∑
m

|λm(A)|p ,

where the λm(A) are the eigenvalues of A.

In particular, the Schatten 1-norm is the trace norm, the 2-norm is
the Frobenius norm and the ∞-norm is the spectral norm.



Density matrices as classical mixture

For any set ~λ = {λm}1≤m≤r such that :
I λm > 0 for all i ,
I
∑
λm = 1,

we may consider the set of density matrices in Md (C) with those
non-zero eigenvalues :

Sd ,~λ = {ρ ∈ Md (C) : λm(ρ) = λmδm≤r} .

In particular r is the rank of ρ.

Moreover,

ρ =
∑
m

λm |φm〉 〈φm|

where the |φm〉 are the eigenvectors of ρ.
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Density matrices as classical mixture II

Measuring ρ with POVM M is equivalent to :
1. Choose m according to the probability distribution ~λ.
2. Measure |φm〉 〈φm| with POVM M.
3. Forget m.



Lower bound on estimation of low-rank quantum states

Proposition
Suppose we have n copies of a state ρ ∈ Sd ,~λ. For any estimator ρ̂,
the worst-case error has the lower bound :

inf
ρ̂

sup
ρ∈Sd,~λ

Eρ
[
‖ρ̂− ρ‖p

]
≥ Cp

√
d
n

(∑
λ

p/2
m

)1/p
.

In particular, the corresponding lower bound on all rank r matrices
is proportional to :

Trace norm
√

rd
n

Frobenius norm
√

d
n , not depending on ~λ.

Spectral norm
√

d
n .
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Totally random measurement

Definitions

1. Choose an orthonormal basis of Cd uniformly at random
2. Use the projection measurement in that basis

Equivalently, the POVM of the totally random measurement is
given by the POVM with values in the pure states and

M(A) =

∫
A
|ψ〉 〈ψ| dµ(ψ),

where µ is the Haar measure on the set of pure states (the
projective space).

The result of the measurement is a rank-one state |ψ〉 〈ψ|.
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Totally random measurement II

Suppose that the state ρ is a pure state |e〉 〈e|.
By symmetry, the result of the totally random measurement on ρ
has expectation

Ee [|ψ〉 〈ψ|] = α |e〉 〈e|+ β1
= αρ+ β1

By linearity, the formula is still true if ρ is not rank-one.
Calculations yield

Eρ [|ψ〉 〈ψ|] =
1

d + 1
(ρ+ 1) .
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Totally random measurement III

I We have n copies of ρ.
I We measure each of them with the TRM.
I We get the results |ψi 〉 〈ψi | for i ≤ n.

Recall

Eρ [|ψ〉 〈ψ|] =
1

d + 1
(ρ+ 1) .

Natural estimator of ρ

ρ̂ =

ΠS

[

d + 1
n

∑
|ψi 〉 〈ψi | − 1

]
=

[
d + 1

n

∑
|ψi 〉 〈ψi | − α1

]
+
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Totally random measurement estimator

Theorem
If ρ ∈ Sd ,r , then the risk of the totally random measurement
procedure is bounded from above by :

Eρ
[
‖ρ̂− ρ‖p

]
≤ Cpr

1
p

√
d
n
.

In particular, it is minimax optimal for the Frobenius norm, up to a
constant.
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Proof
Write Xi = |ψi 〉 〈ψi | − 1

d+1 (ρ+ 1).

Then

ρ̂ = ΠS [ρ+ R] , R =
d + 1

n

∑
Xi .

Concentration inequality by Tropp
If Xi are independent centered Hermitian matrices with
‖Xi‖∞ ≤W and

∥∥E [∑X 2
i
]
∞
∥∥ < V , then for all t > 0 :

P
[∥∥∥∑Xi

∥∥∥
∞
≥ t
]
≤ 2d exp

(
− t2/2

V + tW /3

)
.

Here W = 1 and V = 2/d . Hence

E [‖R‖∞] ≤ C

√
d
n
.
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Proof II

ρ̂ = ΠS [ρ+ R] , E [‖R‖∞] ≤ C

√
d
n
.

Since ρ has rank r , the error ρ− ρ̂ has at most r positive
eigenvalues. The error has trace zero. So that :

‖ρ̂− ρ‖1 ≤ 2r ‖ρ̂− ρ‖∞ .

By interpolation,

‖ρ̂− ρ‖p ≤ Cpr1/p

√
d
n
.

Stability to perturbations

‖ρ̂− ρ‖p ≤ Cp

(
r +

∑
i>r

λi (ρ)

√
n
d

)1/p√
d
n
.
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Perspectives : multiple ions

If our state ρ is multipartite, then the TRM is a collective
measurement. Hard.

Typical case
ρ ∈ M2b(C) is the state of b qubits. Each qubit is measured
individually using a Pauli observable. Easy.
Do we get the same speeds ?
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Perspectives : multiple ions II

Theorem (Xia, Koltchinskii ; Cai et al.)
E1, . . . ,Ed2 basis of the Hilbert space Md (C). Data is Tr (ρEi ) + ξi .
The squared minimax rate in Frobenius norm is d2/n = 4b/n.

Theorem (Butucea, Guţă, Kypraios)
For real quantum Pauli measurements, the squared estimation rate
is bounded from above by 3b/n.
The Fisher information of the measurement on a relevant subspace
would yield a 2b/n bound.
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Questions ?

Thank you !


