# Information geometry of quantum measurement processes 

Jukka Kiukas
Department of Mathematics
Aberystwyth University

Collaboration: Madalin Guta
(Nottingham)

## arXiv:1601.04355

24 January 2017
Toulouse

## Overview

- topic - inference of noisy measurement processes with short memory

- Intro: general statistical approach - models, estimation theory, information (differential) geometry
- Intro: quantum case - motivation from quantum technologies, quantum vs classical statistics
- Specific setting: Quantum Markov processes



## Continual measurement

## processes

- setting - (small) system of interest \& environment
- system interacts with environment locally
- system "moves" dynamically in the environment
- environment "flows" through the system - "input-output"


Input
(incoming atoms, lasers)

Output
(outgoing atoms, scattered light)

- output contains information on the interaction process accessed via measurements



## Inference of measurement

 processes- Assumption - partially unknown interaction
- Goal - infer the unknown parameters from detection statistics
- Statistical inference problem

- use estimators
- "volume" of the output trail sample size
- estimator accuracy increases dynamically


## Overview

- topic - inference of continual noisy measurement processes with short memory

- Intro: general statistical approach - models, estimation theory, information geometry

- Intro: quantum case - motivation from quantum technologies, quantum vs classical statistics
- Specific setting: Quantum Markov processes
- Results - information geometry, Local Asymptotic Normality



## Statistical inference - brief reminder

- Statistical model: a family of probability distributions
statistical model

$$
\left\{f_{p}(x) \mid p \in \Theta\right\}
$$

- describes our assumptions of the system under study
- contains parameters whose true values are unknown
- Parameters can be inferred by devising a statistic, estimator
estimator for $p$

$$
\hat{p}(x)
$$

random variable

## Statistical inference

- Estimation error (typically) reduced by increasing sample size

- The usual binomial example:
statistical model
$f_{p}^{(n)}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \hat{p}^{(n)}(x)=\frac{x}{n}$

Referendum Vote Intention Poll of Polls Latest average of six polls from 12/04/16 to $18 / 04 / 16$


Source data at www.WhatUKThinks.org/EU run by NatCen Social Research

## Statistical inference

- Standard scaling

$$
\operatorname{Var}\left(\hat{p}^{(n)}(x)\right) \sim 1 / n
$$

- Cramer-Rao bound:

$$
\operatorname{Var}\left(\hat{p}^{(n)}(x)\right) \geq \frac{1}{\sqrt{F}}
$$

asymptotic Fisher information rate

- Optimal estimator achieves this bound

The binomial example:

$$
\operatorname{Var}\left(\hat{p}^{(n)}(x)\right)=\frac{p(1-p)}{n}
$$

$$
F=\frac{1}{p(1-p)}
$$


$\square \mathrm{n}=1000$

True value of $p$

## Statistical inference

- Asymptotic Fisher information rate is the constant in the standard scaling of the error of an optimal unbiased estimator
- Definition: logarithmic derivative

Fisher information per sample:

$$
F^{(n)}(p)=\frac{1}{n} \mathbb{E}\left[\left(\frac{\partial}{\partial p} \log f_{p}^{(n)}(x)\right)^{2}\right]
$$



Asymptotic rate:
True value of $p$

$$
F(p)=\lim _{n \rightarrow \infty} F^{(n)}(p)
$$

Exists for MLE with sum of i.i.d. variables but also in more general cases

## "Classical" information geometry ${ }^{1}$

- Multi-parameter setting

$$
p \in \mathcal{S} \quad m \text {-manifold }
$$

- Fisher information matrix:

$$
\begin{aligned}
& F_{i j}^{(n)}(p)=\frac{1}{n} \mathbb{E}\left[\left(\frac{\partial}{\partial p_{i}} \log f_{p}^{(n)}(x)\right)\left(\frac{\partial}{\partial p_{j}} \log f_{p}^{(n)}(x)\right)\right] \\
& F_{i j}(p)=\lim _{n \rightarrow \infty} F_{i j}^{(n)}(p)
\end{aligned}
$$

- metric in full rank case:

$$
\langle X, Y\rangle_{p}=\sum_{i j} X^{i} Y^{j} F_{i j}(p)
$$

- distinguishability distance for the inference problem

$$
T_{p}(\mathcal{S})=\left\{X \left\lvert\, X=\sum_{i=1}^{M} X^{i} \frac{\partial}{\partial p_{i}}\right.\right\} \simeq \mathbb{R}^{m} \quad \begin{aligned}
& \text { tangent } \\
& \text { space }
\end{aligned}
$$

## Degenerate case

- Inference problem: identification of local parameter changes
- Interesting case: some parameters are unidentifiable
- they have zero Fisher information - $F_{i j}(p)$ not a proper metric
- unidentifiable subspace:

$$
\mathcal{T}_{p}^{\text {nonid }}=\left\{Z \mid\langle Z, Z\rangle_{p}=0\right\} \subset T_{p}(\mathcal{S})
$$



- A common instance: symmetries of the model form a group


## Degenerate case symmetries

- Suppose: symmetries of the model form a group $G$ :

$$
\left(\forall n: f_{p}^{(n)}=f_{p^{\prime}}^{(n)}\right) \Leftrightarrow\left(\exists g \in G: p^{\prime}=g p\right)
$$

- only elements of $\mathcal{S} / G$ are identifiable

parameter change along an orbit is unidentifiable
- is there a natural way to describe the structure of $\mathcal{S} / G$ within the structure of $\mathcal{S}$ ?
- connections


## 

- principal bundle $\pi: \mathcal{S} \rightarrow \mathcal{S} / G$
- unidentifiable parameters vertical bundle
$\mathcal{T}^{\text {nonid }}=\operatorname{ker} \pi_{*}$

- Is there a natural way to select complementary subspaces for identifiable directions?
- a horizontal bundle compatible with the metric:

$$
\begin{aligned}
& \mathcal{T}^{\mathrm{id}}=P(T(\mathcal{S})) \\
& P_{p}: T_{p}(\mathcal{S}) \rightarrow T_{p}(\mathcal{S}) \quad P_{p}=P_{p}^{2} \\
& \langle X, Y\rangle_{p}=\left\langle P_{p} X, P_{p} Y\right\rangle_{p}
\end{aligned}
$$

## Overview

- topic - inference of continual noisy measurement processes with short memory

- Intro: general statistical approach - models, estimation theory, information geometry
- Intro: quantum case - motivation from quantum technologies, quantum vs classical statistics
- My specific setting: Quantum Markov processes



## Application - quantum technology

- Quantum Technologies a "1 billion future industry for the UK"2
- High-precision devices
- Secure communication
- Quantum computation
- Relies heavily on statistical methods


A quantum device: feedback control in atom maser (Sayrin et al. Nature 2011)

- Challenge - modelling noise
- current experimental progress - need more accurate theory
- different aspects ("quantum resource", control, system identification)
- Topic of this talk - system identification
- statistical models for quantum devices
- inference of the unknown parameters of the model
- question: which quantum system actually sits inside a given device?

2 UK national quantum technologies programme http://uknqt.epsrc.ac.uk

# Estimation in quantum statistics 

quantum
statistical model

$$
\rho_{p} \quad \longrightarrow
$$



- Quantum statistical model: a family of density matrices describing our assumptions on the state of a quantum system
- Quantum Fisher Information (QFI) = maximal Fisher information over all classical models (measurements)
- Asymptotic estimation (vague idea):

1. prepare weakly correlated states $\rho_{p}^{(n)}$ on an extending system (say $n$-fold tensor product)
$\Rightarrow$ QFI "per sample" $F^{(n)}$ should converge at $n \rightarrow \infty$
2. construct an optimal sequence of measurements
3. apply a (classical) estimator on the data
quantum statistical model

$$
\rho_{p} \geq 0, \quad \operatorname{tr}\left[\rho_{p}\right]=1
$$

quantum measurement

$$
0 \leq M(x) \leq \mathbb{I}, \sum_{x} M(x)=\mathbb{I}
$$

## Quantum information

## geometry

- Multi-parameter setting

$$
p \in \mathcal{S} \quad m \text {-manifold }
$$

- Asymptotic QFI matrix:

$$
F_{i j}(p)=\lim _{n \rightarrow \infty} F_{i j}^{(n)}(p)
$$

- similar structure as in the classical case

$$
\begin{array}{lc}
\langle X, Y\rangle_{p}=\sum_{i j} X^{i} Y^{j} F_{i j}(p) & \text { metric } \\
P_{p}: T_{p}(\mathcal{S}) \rightarrow T_{p}(\mathcal{S}) & \text { compatible } \\
\langle X, Y\rangle_{p}=\left\langle P_{p} X, P_{p} Y\right\rangle_{p} & \text { connection } \\
\mathcal{T}^{\text {id }}=P(T(\mathcal{S})) & \text { identifiable and } \\
& \begin{array}{c}
\text { non-identifiable } \\
\text { directions }
\end{array}
\end{array}
$$



$$
T_{p}(\mathcal{S})=\mathcal{T}_{p}^{\text {nonid }} \oplus \mathcal{T}_{p}^{\text {id }}
$$

vertical bundle horizontal bundle

## Overview

- topic - inference of noisy measurement processes with short memory

- Intro: general statistical approach - models, estimation theory, information geometry
- Intro: quantum case - motivation from quantum technologies, quantum vs classical statistics
- Specific setting: Quantum Markov processes
- Results - information geometry, local asymptotic normality



## Intuition-classical hidden Markov chain

- Scattering interaction between input (environment) and system

$$
\left(X_{n}, Y_{n}\right) \mapsto F\left(X_{n}, Y_{n}\right)=\left(X_{n+1}, Z_{n}\right)
$$

- Input: i.i.d. random variables $Y_{1}, Y_{2}, \ldots$
- System: induced Markov process $X_{1}, X_{2}, \ldots$
- Output: trajectory of weakly correlated variables $Z_{1}, Z_{2}, \ldots$
- Statistical problem: estimate dynamics $F$ by observing the output*

[^0]
## Quantum Markov processes

- environment = Bosonic Fock space over $L^{2}\left(\mathbb{R}_{+}, d t\right) \otimes \mathcal{L}$ time space
outcome space $\mathcal{L}=\operatorname{span}\{|i\rangle \mid i \in \mathcal{I}\}$

- unitary dynamics
- input = field vacuum
- output = weakly correlated field states $\rho_{p}^{(n)}$
- Statistical problem: estimate dynamics from output
- Our goal: derive information geometry for the asymptotic QFI



## Quantum jump trajectories

- Observations at random times induce "quantum jumps" in the system
- Measurement record = trajectory


system evolution
between jumps is contractive:

$$
H_{\text {eff }}=H-\frac{i}{2} \sum_{i=1}^{M} L_{i}^{*} L_{i}
$$

- Parameter manifold: $\mathcal{S}=\left\{\left(H, L_{1}, \ldots, L_{M}\right) \mid H \in M_{d, s a}(\mathbb{C}), L_{i} \in M_{d}(\mathbb{C})\right\}$
- Two distinct observation schemes*:

1. observe until a given time:
$\left(\left(t_{1}, i_{1}\right), \ldots,\left(t_{n}, i_{n}\right)\right), \quad n$ arbitrary, $\quad t_{n} \leq t$

2. observe until given number of jumps: $\left(\left(t_{1}, i_{1}\right), \ldots,\left(t_{n}, i_{n}\right)\right), \quad n$ fixed,$t_{i}$ arbitrary

(1.)

(2.)

## Scheme 1 - time-extensive

- Evolve until time $t$
- The dynamics $U_{p}(t)$ is up to a
 phase given by*

$$
d U_{p}^{(t)}=\left(-i H d t+\sum_{i}\left(L_{i} d A_{i}^{*}-L_{i}^{*} d A_{i}-\frac{1}{2} L_{i}^{*} L_{i} d t\right)\right) U_{p}^{(t)} \quad \begin{aligned}
& \text { Quantum Stochastic } \\
& \text { Differential Equation }
\end{aligned}
$$

- output + system state:

$$
\Psi_{p}^{(t)}=U_{p}^{(t)}\left|\psi_{0} \otimes \mathrm{vac}\right\rangle
$$

- average system dynamics follows the master equation



$$
\begin{array}{cc}
{\left[a_{k}(t), a_{k^{\prime}}^{*}\left(t^{\prime}\right)\right]=\delta_{k k^{\prime}} \delta\left(t-t^{\prime}\right)} & \begin{array}{c}
\text { creation and } \\
\text { annihilation operators }
\end{array} \\
A_{k}(t)=\int_{0}^{t} a_{k}(t) d t & \text { quantum Wiener } \\
\text { processes }
\end{array}
$$

$\mathbb{W}_{p}(X)=\mathbb{G}_{p}(X)+\sum_{i} L_{i}^{*} X L_{i} \quad$ evolution generator
$\mathbb{G}_{p}(X)=i X H_{\text {eff }}-i H_{\text {eff }}^{*} X \quad$ "drift" generator
assume strong ergodicity: there is a unique
stationary state with $\lim _{t \rightarrow \infty} e^{t \mathbb{W}_{p}}(X)=\operatorname{tr}\left[\rho_{p}^{\text {time }} X\right] \mathbb{I}$

## Scheme 2 - countextensive

- Evolve until a given number of jumps $n$

- At each jump record the time \& outcome in the state $\quad V_{p}^{(n)} \psi_{0} \in \mathcal{H} \otimes L^{2}\left(\Delta_{n}, d t_{1} \cdots d t_{n}\right) \otimes \mathcal{L}^{\otimes n}$ System time space (ordered)

$$
\left(V_{p}^{(n)} \psi_{0}\right)\left(t_{1}, \ldots, t_{n}\right)=\sum_{i_{1}, \ldots, i_{n}} L_{i_{n}} e^{-i\left(t_{n}-t_{n-1}\right) H_{\text {eff }}} \cdots L_{i_{1}} e^{-i t_{1} H_{\text {eff }}} \psi_{0} \otimes\left|i_{1}, \ldots, i_{n}\right\rangle
$$

- output + system state $\Psi_{p}^{(n)}=V_{p}^{(n)} \psi_{0}$
- Average system dynamics is a discrete Markov chain

The stationary states of the two

$$
\begin{aligned}
& \text { transition } \\
& \text { channel: }
\end{aligned} T_{p}(X)=\left[V_{p}^{(1)}\right]^{*}\left(X \otimes \mathbb{I}_{\text {out }}\right) V_{p}^{(1)}
$$

assume strong ergodicity: unique stationary state with $\lim _{n \rightarrow \infty} T_{p}^{n}(X)=\operatorname{tr}\left[\rho_{p}^{\text {count }} X\right] \mathbb{I}$ schemes are different but related:

$$
\rho_{p}^{\text {count }}=r_{p}\left[\mathbb{G}_{p}\right]_{*}\left(\rho_{p}^{\text {time }}\right) \quad \mathbb{G}_{p}(X)=i X H_{\text {eff }}-i H_{\text {eff }}^{*} X
$$

## Symmetries

- The parameters $p=\left(H, L_{1}, \ldots, L_{M}\right)$ are not fully identifiable from the output
- Result: the symmetry groups coincide up to a phase:

1. Time-extensive scheme

> base manifold identifiable elements


$$
\begin{aligned}
& G=P U(d) \times \mathbb{R} \\
& p=(H, L) \mapsto g p=\left(W^{*} H W+c \mathbb{I}, W^{*} L W\right), \quad g=(W, c)
\end{aligned}
$$

2. Count-extensive scheme

$$
\begin{aligned}
& G=P U(d) \times U(1) \\
& p=(H, L) \mapsto g p=\left(W^{*} H W, c W^{*} L_{1} W, \ldots, c W^{*} L_{M} W\right), \quad g=(W, c)
\end{aligned}
$$

## Obtaining the asymptotic geometry

- Show that the QFI rate converges as the extensive parameter goes to infinity

Scheme 1: $\quad F_{i j}(p)=\lim _{t \rightarrow \infty} F_{i j}^{(t)}(p)$
Scheme 2: $\quad F_{i j}(p)=\lim _{n \rightarrow \infty} F_{i j}^{(n)}(p)$

- Write the metric in terms of a projection
- Metric should be simple in the range of the projection (horizontal bundle)
- the nontrivial part of the geometry encapsulated in the connection



## Obtaining the asymptotic Fisher metric - time-extensive case

- How do we take the limit?
- Define a sesquilinear form

$$
\begin{aligned}
& (X, Y)_{p}(t)=\left\langle\varphi \otimes \operatorname{vac} \mid \mathbb{F}_{p, t}(X)^{*} \mathbb{F}_{p, t}(Y) \varphi \otimes \operatorname{vac}\right\rangle \\
& \quad X, Y \in T_{p}(\mathcal{S})
\end{aligned}
$$

- covariances of quantum stochastic fluctuators
- Prop 1. (from Q Ito calculus): $\langle X, Y\rangle_{p}(t)=\operatorname{Re}(X, Y)_{p}(t)$
QFI metric fluctuator covariance
- Prop 2. Fluctuator covariance converges at $t \rightarrow \infty$

Compare: CLT for i.i.d mean zero variables

Input
(incoming atoms, lasers)
Output
(outgoing atoms, scattered light)


Quantum stochastic fluctuator

$$
\begin{aligned}
\mathbb{F}_{p, t}(X) & =\frac{1}{\sqrt{t}} \int_{0}^{t}\left(i \sum_{k=1}^{N} X^{k}(t) d A_{k}^{\dagger}(t)+\mathcal{E}_{p}(X)(t) d t\right) \\
\mathcal{E}_{p}(X) & =X^{0}+\operatorname{Im} \sum_{k}\left[X^{k}\right]^{*} L_{k}
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} \operatorname{Var}\left(\frac{1}{\sqrt{t}} \sum_{i=1}^{t} X_{i}\right)=\sigma^{2}
$$

## Equivalence of information geometries

- The two schemes coincide in $\mathcal{M}_{p}=\left\{X \in T_{p}(\mathcal{S}) \mid \operatorname{tr}\left[\rho_{p}^{\text {time }} \mathcal{E}_{p}(X)\right]=0\right\}$
- Explicitly:

$$
\begin{aligned}
& P_{p}(X)=X-\left(i\left[H, \mathbb{W}_{p}^{-1} \circ \mathcal{E}_{p}(X)\right], i\left[L_{1}, \mathbb{W}_{p}^{-1} \circ \mathcal{E}_{p}(X)\right], \ldots, i\left[L_{M}, \mathbb{W}_{p}^{-1} \circ \mathcal{E}_{p}(X)\right]\right) \\
& \langle X, Y\rangle_{p}=\operatorname{Re} \sum_{i=1}^{M} \operatorname{tr}\left[\rho_{p}^{\text {time }} X_{i}^{*} Y_{i}\right] \quad \text { for all } \quad X, Y \in \operatorname{Ran} P_{p}
\end{aligned}
$$

- Summary of the structure:
- unidentifiable parameters subspace $\mathcal{T}_{p}^{\text {nonid }}=\operatorname{ker} P_{p}$
- identifiable parameters subspace $\mathcal{T}_{p}^{\text {id }} \simeq \operatorname{ran} P_{p}$
- compatible with symmetry -

$$
\begin{aligned}
& \mathfrak{g} \simeq \mathcal{T}_{p}^{\text {nonid }} \\
& \text { Lie algebra }
\end{aligned}
$$

$$
T_{p}(\mathcal{S})=\underset{\text { vertical bufdile }}{\mathcal{T}_{p}^{\text {notid }}} \underset{\text { horizontal bundle }}{\mathcal{T}_{p}^{\mathrm{id}}}
$$

## Symplectic structure

- We have $\langle X, Y\rangle_{p}=$ Re $\sum_{i=1}^{M} \operatorname{tr}\left[\rho_{p}^{\text {time }} X_{i}^{*} Y_{i}\right] \quad$ on $\quad \mathcal{T}_{p}^{\text {id }} \simeq \operatorname{ran} P_{p}$
- What about the imaginary part?
- symplectic form $\Sigma(X, Y)_{p}=\operatorname{Im} \sum_{i=1}^{M} \operatorname{tr}\left[\rho_{p}^{\text {time }} X_{i}^{*} Y_{i}\right]$
- Non-degenerate on $\mathcal{T}_{p}^{\text {id }} \simeq \operatorname{ran} P_{p}$
- a CCR algebra:

$$
\begin{aligned}
& \text { Weyl operators } \\
& W(X) W(Y)=e^{-i \Sigma(X, Y)_{p}} W(X+Y)
\end{aligned}
$$

Vacuum state

- Why is this useful?

$$
\langle\Omega| W(X)|\Omega\rangle=e^{-\langle X, X\rangle_{p} / 2}
$$

- geometry is imprinted in a quantum phase space
- quantum LAN


## Reduction of the inference problem (LAN)

- We get a CCR algebra on the identifiable subspace $\mathcal{T}_{p}^{\text {id }} \simeq \operatorname{ran} P_{p}$
$W(X) W(Y)=e^{-i \Sigma(X, Y)_{p}} W(X+Y)$
$\langle\Omega| W(X)|\Omega\rangle=e^{-\langle X, X\rangle_{p} / 2}$
- quantum version of a Gaussian statistical model - coherent states:

$$
|X\rangle=W(X)|\Omega\rangle
$$

- Theorem (Local Asymptotic Normality). The output quantum model reduces to this Gaussian model at $t \rightarrow \infty$
- simple and tractable model
- information is encapsulated in the symplectic geometry

$$
\langle X, Y\rangle_{p} \quad \Sigma(X, Y)_{p}
$$

(incoming atoms, lasers)

Output
(outgoing atoms, scattered light)


$$
\begin{aligned}
& \text { output states } \\
& X=\sum_{i} v_{i} e_{i} \\
& Y=\sum_{i} v_{i} e_{i} \\
& \text { symplectic basis }
\end{aligned}
$$

geometry is revealed in the phase space


## Conclusion

- Context: inference of continual quantum measurement processes
- Mathematical structure:
- Statistical inference (models, estimators)

Input
(incoming atoms, lasers)


- Riemannian geometry - Fisher information
- principal connection - "gauge" group for unidentifiable parameters
- symplectic structure - quantum inner product
- Result: Model reduction to quantum Gaussian states (linear inference)

$$
\rho_{u / \sqrt{t}}^{\text {out }}(t)
$$

$$
\rho_{v / \sqrt{t}}^{\text {out }}(t)
$$




[^0]:    * T. Petrie, Ann. of Math. Stat. (1969). P.J. Bickel, Y. Ritov, and T. Ryden, Ann. Stat. (1998)

