Quantum statistics:
optimal state estimation

Mădălin Guță

School of Mathematical Sciences
University of Nottingham
PART I: Basic notions of classical statistics

PART II: Quantum statistics intro

PART III: Quantum local asymptotic normality
What is statistical inference?

Given random data X drawn from an unknown distribution, one aims to make an ‘educated guess’ about some property of the underlying distribution.

Basic notions

- **Density estimation**: given X_1, \ldots, X_n independent identically distributed (i.i.d.) with unknown density $p \in L^1([0, 1])$, estimate the value of $p(x)$ for some $x \in [0, 1]$.

- **Hypothesis testing**: given X drawn from either P_0 or P_1 decide which was the underlying distribution.

- **Sufficient statistic**: can data $X \sim P_\theta$ be ‘summarised’ into a ‘simpler’ statistics $f(X)$ without losing information about the unknown parameter θ?

- **Identifiability**: Is the map $\theta \mapsto P_\theta$ one-to-one?

- **Optimality**: how do we compare the performance of estimators and which are the optimal ones?

- **Asymptotics**: what happens in the limit of ‘large number of data’?
Statistical models

Definition

Let Θ be a parameter space. A **statistical model** over Θ is a family $\{P_\theta : \theta \in \Theta\}$ of probability distributions on a measure space (\mathcal{X}, Σ).

Example: Repeated coin toss: $X_1, ..., X_n$ i.i.d. with $P_\theta(\left[X_i = 1 \right]) = \theta$ and $P_\theta(\left[X_i = 0 \right]) = 1 - \theta$, with $\theta \in \Theta := [0,1]$. The joint distribution is:

$$P_n(\left[X_1 = x_1, ..., X_n = x_n \right]) = \prod_{i=1}^{n} P_\theta(\left[X_i = x_i \right]) = \theta^{\#1_s} \cdot (1 - \theta)^{\#0_s}$$

Gaussian shift on \mathbb{R}^k: family of Gaussian distributions $N(\theta, V)$ with unknown mean $\theta \in \mathbb{R}^k$ and known $k \times k$ covariance matrix V.

Tomography: An unknown probability density p over \mathbb{R}^2 is probed through its marginals along random directions ϕ in plane. For each ϕ we get data $X \sim \mathbb{R}[p](x | \phi)$ where $\mathbb{R}[p]$ is the Radon transform $\mathbb{R}[p](x | \phi) = \int p(x \cos \phi + t \sin \phi, x \sin \phi - t \cos \phi) dt$.
Statistical models

Definition

Let Θ be a parameter space. A **statistical model** over Θ is a family $\{P_\theta : \theta \in \Theta\}$ of probability distributions on a measure space (\mathcal{X}, Σ).

Example

- **Repeated coin toss**: X_1, \ldots, X_n i.i.d. with $P_\theta([X_i = 1]) = \theta$ and $P_\theta([X_i = 0]) = 1 - \theta$, with $\theta \in \Theta := [0, 1]$. The joint distribution is:

$$P^n_\theta([X_1 = x_1, \ldots, X_n = x_n]) = \prod_{i=1}^n P_\theta([X_i = x_i]) = \theta^{\#1s} \cdot (1 - \theta)^{\#0s}$$

- **Gaussian shift on \mathbb{R}^k**: family of Gaussian distributions $N(\theta, V)$ with unknown mean $\theta \in \mathbb{R}^k$ and known $k \times k$ covariance matrix V

- **Tomography**: an unknown probability density p over \mathbb{R}^2 is probed through its marginals along random directions ϕ in plane. For each ϕ we get data $X \sim R[p](x|\phi)$ where $R[p]$ is the Radon transform

$$R[p](x|\phi) = \int p(x \cos \phi + t \sin \phi, x \sin \phi - t \cos \phi)dt$$
Parametric estimation

Problem

Given

- a subset Θ of \mathbb{R}^k
- data $X \sim P_\theta$ with $\theta \in \Theta$ and P_θ probability distribution on (\mathcal{X}, Σ)
- a loss function $W : \Theta \times \Theta \to \mathbb{R}^+$, e.g. $W(\hat{\theta}, \theta) = ||\theta - \hat{\theta}||^2$

devise an estimator $\hat{\theta} = \hat{\theta}(X)$ such that the risk

$$R(\hat{\theta}, \theta) := \mathbb{E}_\theta (W(\hat{\theta}, \theta)) = \int_{\mathcal{X}} W(\hat{\theta}(x), \theta) P_\theta(dx)$$

is small.
Problem

\textbf{Given}

- a subset Θ of \mathbb{R}^k
- data $X \sim \mathbb{P}_\theta$ with $\theta \in \Theta$ and \mathbb{P}_θ probability distribution on (\mathcal{X}, Σ)
- a loss function $W : \Theta \times \Theta \rightarrow \mathbb{R}_+$, e.g. $W(\hat{\theta}, \theta) = \|\theta - \hat{\theta}\|^2$

\textit{devise an estimator} $\hat{\theta} = \hat{\theta}(X)$ \textit{such that the risk}

$$R(\hat{\theta}, \theta) := \mathbb{E}_\theta(W(\hat{\theta}, \theta)) = \int_{\mathcal{X}} W(\hat{\theta}(x), \theta) \mathbb{P}_\theta(dx)$$

\textit{is small.}

Remark

- The same problem can be formulated for ‘non-parametric’ Θ, and/or estimation of a function $t = t(\theta)$
- In general the estimator may be randomised, for example
 - $\hat{\theta} = \hat{\theta}(X, U)$ where U is an additional random variable with fixed, known distribution
Unbiased estimators

Let \(\{P_\theta : \theta \in \Theta \subseteq \mathbb{R}^k \} \) be a parametric statistical model and let \(X \sim P_\theta \).

- The mean square error (MSE) of estimator \(\hat{\theta}(X) = \text{variance} + \text{bias} \)

\[
\mathbb{E}_\theta \left[(\hat{\theta} - \theta)^2 \right] = \int (\hat{\theta}(x) - \theta)^2 P_\theta(dx) = \\
\int (\hat{\theta}(x) - \mathbb{E}_\theta(\hat{\theta}))^2 P_\theta(dx) + (\theta - \mathbb{E}_\theta(\hat{\theta}))^2 = V(\hat{\theta}) + B(\hat{\theta})^2
\]

- estimator \(\hat{\theta}(X) \) is called unbiased if \(\mathbb{E}_\theta(\hat{\theta}(X)) = \theta \) for all \(\theta \).
 If \(\hat{\theta} \) is unbiased then the mean square error is equal to \(V(\hat{\theta}) \).
Unbiased estimators

Let \(\{P_\theta : \theta \in \Theta \subset \mathbb{R}^k\} \) be a parametric statistical model and let \(X \sim P_\theta \).

- The mean square error (MSE) of estimator \(\hat{\theta}(X) = \text{variance} + \text{bias} \)

\[
\mathbb{E}_\theta [(\hat{\theta} - \theta)^2] = \int (\hat{\theta}(x) - \theta)^2 P_\theta(dx) = \int (\hat{\theta}(x) - \mathbb{E}_\theta(\hat{\theta}))^2 P_\theta(dx) + (\theta - \mathbb{E}_\theta(\hat{\theta}))^2 = V(\hat{\theta}) + B(\hat{\theta})^2
\]

- estimator \(\hat{\theta}(X) \) is called unbiased if \(\mathbb{E}_\theta(\hat{\theta}(X)) = \theta \) for all \(\theta \).
 If \(\hat{\theta} \) is unbiased then the mean square error is equal to \(V(\hat{\theta}) \).

Example (Gaussian shift)

Let \(Y_1, \ldots, Y_n \) be i.i.d. normally distributed with \(P_\theta = N(\theta, V) \).

Then \(\hat{\theta}_n := \bar{Y}_n \equiv (\sum_i Y_i)/n \) is an unbiased estimator of \(\theta \) with MSE

\[
\mathbb{E}_\theta [(\hat{\theta}_n - \theta)^2] = \mathbb{E}_\theta \left[\left(\frac{1}{n} \sum_{i=1}^n (Y_i - \theta) \right)^2 \right] = \frac{1}{n} V
\]
Fisher information and the Cramér-Rao bound

- 'smooth' parametric statistical model

\[P_\theta \text{ has probability density } p_\theta = \frac{dP_\theta}{d\mu} \text{ which is smooth with respect to } \theta \in \Theta \subset \mathbb{R}^k \]

- score functions

\[\dot{\ell}_{\theta,i} := \frac{\partial \log p_\theta}{\partial \theta_i}, \quad i = 1, \ldots, k \]

- Fisher information matrix

\[I_{i,j}(\theta) := \mathbb{E}_\theta(\dot{\ell}_{\theta,i} \dot{\ell}_{\theta,j}) = \int_{x:p_\theta(x) > 0} p_\theta^{-1}(x) \frac{\partial p_\theta}{\partial \theta_i}(x) \frac{\partial p_\theta}{\partial \theta_j}(x) \mu(dx) \]
Fisher information and the Cramér-Rao bound

- ‘smooth’ parametric statistical model

\(P_\theta \) has probability density \(p_\theta = \frac{dP_\theta}{d\mu} \) which is smooth with respect to \(\theta \in \Theta \subset \mathbb{R}^k \)

- score functions \(\dot{\ell}_{\theta,i} := \frac{\partial \log p_\theta}{\partial \theta_i}, \quad i = 1, \ldots, k \)

- Fisher information matrix

\[
I_{i,j}(\theta) := \mathbb{E}_\theta(\dot{\ell}_{\theta,i} \dot{\ell}_{\theta,j}) = \int_{x:p_\theta(x) > 0} p_\theta^{-1}(x) \frac{\partial p_\theta}{\partial \theta_i}(x) \frac{\partial p_\theta}{\partial \theta_j}(x) \mu(dx)
\]

Theorem (Cramér-Rao)

Let \(\hat{\theta} \) be an unbiased estimator of \(\theta \). Then the following matrix inequality holds

\[
\mathbb{E}_\theta((\hat{\theta} - \theta)^T(\hat{\theta} - \theta)) = \text{Var}(\hat{\theta}) \geq I(\theta)^{-1}
\]

where \(I(\theta) \) is the Fisher information matrix.

Proof for one-dimensional \(\theta \): by Cauchy-Schwarz in \(L^2(\Omega, \Sigma, \mu) \)

\[
\text{Var}(\hat{\theta}) \cdot I(\theta) = \mathbb{E}_\theta((\hat{\theta} - \theta)^2) \cdot \mathbb{E}_\theta(\dot{\ell}_\theta^2) \geq \left| \mathbb{E}_\theta((\hat{\theta} - \theta)\dot{\ell}_\theta) \right|^2 = 1
\]
Properties of the Fisher information matrix

- $I(\theta)$ is a positive definite real $k \times k$ matrix

- $I(\theta)$ is additive for products of independent models: if $\mathbb{P}_\theta = \mathbb{P}^{(1)}_\theta \times \mathbb{P}^{(2)}_\theta$ then $I(\theta) = I^{(1)}(\theta) + I^{(2)}(\theta)$

- The Hellinger distance between infinitesimally close densities p_θ and $p_{\theta+d\theta}$ is determined by the Fisher information

\[h(p_\theta, p_{\theta+d\theta})^2 = \int (\sqrt{p_\theta(x)} - \sqrt{p_{\theta+d\theta}(x)})^2 \mu(dx) = \frac{1}{4} I(\theta)(d\theta)^2 + o((d\theta)^2) \]

- randomisation: $T : L^1(\Omega, \sigma, \mu) \to L^1(\Omega', \sigma', \mu')$, linear, maps pdfs to pdfs (e.g. randomised statistic, Markov kernel). Let $p'_\theta := T(p_\theta)$. Then

\[h(p'_{\theta_1}, p'_{\theta_2}) \leq h(p_{\theta_1}, p_{\theta_2}) \quad \text{and} \quad I'(\theta) \leq I(\theta) \]

- $I(\theta)$ is the unique metric contracting under all randomisations
Example: repeated coin toss

Let X_1, \ldots, X_n be i.i.d. Bernoulli with $\mathbb{P}_\theta([X = 1]) = \theta$ and $\mathbb{P}_\theta([X = 0]) = 1 - \theta$.

- $\hat{\theta}_n := \bar{X}_n \equiv (\sum_{i=1}^n X_i)/n$ is an unbiased estimator of θ. Indeed
 \[
 \mathbb{E}_\theta(\bar{X}_n) = \mathbb{E}(X) = \mathbb{P}_\theta([X = 0]) \cdot 0 + \mathbb{P}_\theta([X = 1]) \cdot 1 = \theta
 \]

- The Fisher information is
 \[
 I(\theta) = \mathbb{E}_\theta[\ell_\theta^2] = \theta \cdot \left(\frac{d \log \theta}{d\theta} \right)^2 + (1 - \theta) \cdot \left(\frac{d \log (1 - \theta)}{d\theta} \right)^2
 \]
 \[
 = \frac{1}{\theta} + \frac{1}{1 - \theta} = \frac{1}{\theta(1 - \theta)} = \frac{1}{\text{Var}(X)}
 \]

- $\hat{\theta}_n$ attains the Cramér-Rao bound:
 \[
 \mathbb{E} \left[(\hat{\theta}_n - \theta)^2 \right] = \frac{1}{n} \text{Var}(X) = \frac{\theta(1 - \theta)}{n} = \frac{1}{nI(\theta)}
 \]
Asymptotic efficiency

The theory of asymptotic efficiency shows that the Cramér-Rao bound is asymptotically attained in the following sense.

Definition

Let \(\{P_\theta : \theta \in \Theta \subset \mathbb{R}^k\} \) be a parametric statistical model. Let \(X_1, \ldots, X_n \) be i.i.d. with distribution \(P_\theta \). An estimator \(\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n) \) is called asymptotically efficient if

\[
\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} N(0, I(\theta)^{-1})
\]

In particular, \(\hat{\theta}_n \) attains the CR bound asymptotically:

\[
nE_{\theta} \left[(\hat{\theta}_n - \theta)^T (\hat{\theta}_n - \theta) \right] \to I(\theta)^{-1}.
\]
Asymptotic efficiency

The theory of asymptotic efficiency shows that the Cramér-Rao bound is asymptotically attained in the following sense.

Definition

Let \(\{P_\theta : \theta \in \Theta \subset \mathbb{R}^k \} \) be a parametric statistical model. Let \(X_1, \ldots, X_n \) be i.i.d. with distribution \(P_\theta \). An estimator \(\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n) \) is called asymptotically efficient if

\[
\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} N(0, I(\theta)^{-1})
\]

In particular, \(\hat{\theta}_n \) attains the CR bound asymptotically:

\[
n \mathbb{E}_\theta \left[(\hat{\theta}_n - \theta)^T (\hat{\theta}_n - \theta) \right] \rightarrow I(\theta)^{-1}.
\]

Theorem

Under regularity conditions, the maximum likelihood estimator

\[
\hat{\theta}_n(X_1, \ldots, X_n) = \arg \max_\tau \prod_{i=1}^n p_\tau(X_i) = \arg \max_\tau \sum_{i=1}^n \ell_\tau(X_i)
\]

is asymptotically efficient.
Example: repeated coin toss

Let X_1, \ldots, X_n be i.i.d. with $X_i \sim \text{Bernoulli}(\theta)$

- Estimator $\hat{\theta}_n := \bar{X}_n \equiv (\sum_{i=1}^n X_i)/n$ has binomial distribution $\text{Bin}(n, \theta)$

$$P_{\theta}[\hat{\theta}_n = k/n] = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

- By the Central Limit Theorem we have

$$\sqrt{n}(\hat{\theta}_n - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \theta) \xrightarrow{d} N(0, \text{Var}(X)) = N(0, \theta(1 - \theta))$$

- Thus \bar{X}_n is asymptotically efficient (and is equal to the max. lik. estimator).
Local asymptotic normality for coin toss

- CLT: \(\hat{\theta}_n \) is approximately distributed as

\[
\hat{\theta}_n \approx \theta + \frac{1}{\sqrt{n}} \epsilon
\]

with ‘error’ \(\epsilon \sim N(0, \theta(1 - \theta)) \) whose variance depends on \(\theta \).

- A closer look shows that a Gaussian with a fixed variance is a good fit for the binomial for a whole interval of parameters \(\theta \)
Local asymptotic normality for coin toss

- CLT: \(\hat{\theta}_n \) is approximately distributed as
 \[
 \hat{\theta}_n \approx \theta + \frac{1}{\sqrt{n}} \epsilon
 \]
 with ‘error’ \(\epsilon \sim N(0, \theta(1 - \theta)) \) whose variance depends on \(\theta \).

- A closer look shows that a Gaussian with a fixed variance is a good fit for the binomial for a whole interval of parameters \(\theta \)

![Graph showing comparison between binomial and normal distributions]

- Binomial n=100 p=0.6
- Normal m=60 v=25
Local asymptotic normality for coin toss

- CLT: $\hat{\theta}_n$ is approximately distributed as

$$\hat{\theta}_n \approx \theta + \frac{1}{\sqrt{n}} \epsilon$$

with ‘error’ $\epsilon \sim \mathcal{N}(0, \theta(1 - \theta))$ whose variance depends on θ.

- A closer look shows that a Gaussian with a fixed variance is a good fit for the binomial for a whole interval of parameters θ

![Graph showing binomial and normal distributions]

Binomial $n=100$ $p=0.5$

Normal $m=50$ $v=25$
Local asymptotic normality for coin toss

- CLT: $\hat{\theta}_n$ is approximately distributed as
 \[\hat{\theta}_n \approx \theta + \frac{1}{\sqrt{n}} \epsilon \]
 with ‘error’ $\epsilon \sim N(0, \theta(1 - \theta))$ whose variance depends on θ.

- A closer look shows that a Gaussian with a fixed variance is a good fit for the binomial for a whole interval of parameters θ
Local asymptotic normality for coin toss

- CLT: $\hat{\theta}_n$ is approximately distributed as

$$\hat{\theta}_n \approx \theta + \frac{1}{\sqrt{n}} \epsilon$$

with ‘error’ $\epsilon \sim N(0, \theta(1 - \theta))$ whose variance depends on θ.

- A closer look shows that a Gaussian with a fixed variance is a good fit for the binomial for a whole interval of parameters θ

![Graph showing the fit between binomial and normal distributions](image-url)
Local asymptotic normality for coin toss

- For large n, θ can be ‘localised’ in a region of size $n^{-1/2+\epsilon}$ centred at some θ_0
- Switch to local model: $\theta = \theta_0 + u/\sqrt{n}$ with unknown local parameter u.
- Rewrite $\hat{\theta}_n = \theta_0 + \hat{u}_n/\sqrt{n}$ in terms of sufficient statistic
 \[\hat{u}_n := \sqrt{n}(\hat{\theta}_n - \theta_0) \approx N(u, I_{\theta_0}^{-1}) \]

Lemma (LAN with weak convergence)

“The binomial model with local parameter u converges to a Gaussian shift model”.

For any local parameter u the convergence in distribution holds

\[\hat{u}_n \xrightarrow{\mathcal{L}} N\left(u, I_{\theta_0}^{-1}\right), \quad I_{\theta_0} = \frac{1}{\theta_0(1 - \theta_0)} \]
Local asymptotic normality for coin toss

- For large n, θ can be ‘localised’ in a region of size $n^{-1/2+\epsilon}$ centred at some θ_0.
- Switch to local model: $\theta = \theta_0 + u/\sqrt{n}$ with unknown local parameter u.
- Rewrite $\hat{\theta}_n = \theta_0 + \hat{u}_n/\sqrt{n}$ in terms of sufficient statistic

\[\hat{u}_n := \sqrt{n}(\hat{\theta}_n - \theta_0) \approx N(u, I_{\theta_0}^{-1}) \]

Lemma (LAN with weak convergence)

"The binomial model with local parameter u converges to a Gaussian shift model".

For any local parameter u the convergence in distribution holds

\[\hat{u}_n \xrightarrow{\mathcal{L}} N(u, I_{\theta_0}^{-1}), \quad I_{\theta_0} = \frac{1}{\theta_0(1 - \theta_0)} \]

Sketch of proof: by Lévy’s Theorem it suffices to prove convergence of characteristic functions:

\[\mathbb{E}_{\theta_0 + u/\sqrt{n}} \left(\exp(it\hat{u}_n) \right) \rightarrow \exp(itu) \cdot \exp(-t^2\theta_0(1 - \theta_0)/2). \]

Since \hat{u}_n is a sum of i.i.d. variables the left side is

\[\left[\mathbb{E}_{\theta_0 + u/\sqrt{n}} \left(\exp(it(X - \theta_0)/\sqrt{n}) \right) \right]^n = \left(1 - \frac{\theta_0(1 - \theta_0)t^2/2 + itu}{n} + o(n^{-3/2}) \right)^n. \]
\((Y_1, \ldots, Y_n)\) i.i.d. with \(P_{\theta_0 + u/\sqrt{n}}\) a ‘smooth’ family with \(u \in \mathbb{R}^k\). Then

\[
\left\{ P_{\theta_0 + u/\sqrt{n}} : u \in \mathbb{R}^k \right\} \rightsquigarrow \left\{ N(u, I_{\theta_0}^{-1}) : u \in \mathbb{R}^k \right\}
\]
LAN for general parametric model

- \((Y_1, \ldots, Y_n) \) i.i.d. with \(\mathbb{P}_{\theta_0 + u / \sqrt{n}} \) a ‘smooth’ family with \(u \in \mathbb{R}^k \). Then

\[
\left\{ \mathbb{P}_{\theta_0 + u / \sqrt{n}} : u \in \mathbb{R}^k \right\} \rightsquigarrow \left\{ N(u, I_{\theta_0}^{-1}) : u \in \mathbb{R}^k \right\}
\]

- Weak convergence:

convergence in distribution of likelihood ratio process (sufficient statistic)

\[
\left\{ \frac{d\mathbb{P}^n_{\theta_0 + u / \sqrt{n}}}{d\mathbb{P}^n_{\theta_0}} : u \in \mathbb{R}^k \right\} \xrightarrow{\mathcal{D}} \left\{ \frac{dN(u, I_{\theta_0}^{-1})}{dN(0, I_{\theta_0}^{-1})} : u \in \mathbb{R}^k \right\}
\]
(\(Y_1, \ldots, Y_n\)) i.i.d. with \(\mathbb{P}_{\theta_0 + u/\sqrt{n}}\) a ‘smooth’ family with \(u \in \mathbb{R}^k\). Then

\[
\left\{ \mathbb{P}_n^{\theta_0 + u/\sqrt{n}} : u \in \mathbb{R}^k \right\} \rightsquigarrow \left\{ N(u, I_{\theta_0}^{-1}) : u \in \mathbb{R}^k \right\}
\]

Strong convergence (Le Cam):

there exist randomizations \(T_n, S_n\) such that

\[
\lim_{n \to \infty} \sup_{\|u\| < a} \left\| T_n p_{\theta_0 + u/\sqrt{n}} - n(u, I_{\theta_0}^{-1}) \right\|_1 = 0
\]

and

\[
\lim_{n \to \infty} \sup_{\|u\| < a} \left\| p_{\theta_0 + u/\sqrt{n}} - S_n n(u, I_{\theta_0}^{-1}) \right\|_1 = 0
\]

where \(n(u, I_{\theta_0}^{-1})\) is the pdf of \(N(u, I_{\theta_0}^{-1})\).
PART II: Quantum statistics intro
Quantum mechanics up to the 60’s

- Q.M. predicts probability distributions of measurement outcomes
- Perform measurements on huge ensembles
- Observed frequencies = probabilities

Old Paradigm
It makes no sense to talk about individual quantum systems

E. Schrödinger
[“Are there quantum jumps?”, British J.Phil. Science 1952]

“We are not experimenting with single particles, any more than we can raise Ichtyosauria in the zoo.

We are scrutinizing records of events long after they have happened.”
Are there quantum jumps?

- First experiments with individual quantum systems
- Measurements with stochastic outcomes
- Stochastic Schrödinger equations
Influx of mathematical ideas in the 70’s

- **Probability**
 - what is the nature of quantum noise

- **Filtering and Control Theory**
 - how to monitor and control quantum systems in noisy environments in real time

- **Information Theory**
 - how to encode, transmit and decode quantum information

- **Statistics and metrology**
 - how to learn unknown parameters from measurement outcomes
Problem: Quantum state estimation

- Quantum computation goal: create specific states of multiple "qubits" (e.g. ions)
- Validation: statistical estimation from measurement outcomes

4^8 - 1 = 65,535 parameters
3^8 \times 100 = 656,100 measurements
10 hours measurement time
days of computer time

[Häffner et al, Nature 2005]

Rainer Blatt’s Lab, Innsbruck
“quantum computer” with 8 qubits (ions)
Quantum states

- **Complex Hilbert space** of ‘wave functions’ $\mathcal{H} = \mathbb{C}^d, L^2(\mathbb{R})$...

- **State = preparation:** complex density matrix ρ on \mathcal{H}

 - $\rho = \rho^*$ (selfadjoint)
 - $\rho \geq 0$ (positive)
 - $\text{Tr}(\rho) = 1$ (normalised)

- **Convex space of states**

 - extremals (pure states) : one dimensional projection $P_\psi = |\psi\rangle\langle\psi| = \psi\psi^*$ with $\|\psi\| = 1$
 - Mixed state: convex combination of pure states

\[
\rho = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|
\]

- **Natural distances:**

 - operator norm: $\|\rho_1 - \rho_2\| := \lambda_{\text{max}}(|\rho_1 - \rho_2|)$
 - trace norm: $\|\rho_1 - \rho_2\|_1 := \text{Tr}(|\rho_1 - \rho_2|)$
 - norm-two: $\|\rho_1 - \rho_2\|_2^2 := \text{Tr}(|\rho_1 - \rho_2|^2)$
 - Bures distance: $d^2_b(\rho_1, \rho_2) := 2(1 - \text{Tr}\sqrt{\rho_1^{1/2} \rho_2 \rho_1^{1/2}})$
Simple measurements and observables

- **Measurement setting** given by an orthonormal basis \(s := \{ |e_1\rangle, \ldots, |e_d\rangle \} \) in \(\mathbb{C}^d \)

- **Outcome** of measurement is a random index of a basis element \(O \in \{1, \ldots, d\} \)

- **Probability distribution**: if system is prepared state \(\rho \)

\[
P[O = i] = \langle e_i | \rho | e_i \rangle = \rho_{ii}
\]
Simple measurements and observables

- **Measurement setting** given by an orthonormal basis $s := \{|e_1\rangle, \ldots, |e_d\rangle\}$ in \mathbb{C}^d

- **Outcome** of measurement is a random index of a basis element $O \in \{1, \ldots, d\}$

- **Probability distribution**: if system is prepared state ρ

 $$\mathbb{P}[O = i] = \langle e_i | \rho | e_i \rangle = \rho_{ii}$$

- **Observable**: selfadjoint operator A on \mathcal{H}

 $$A = \int_{\sigma(A) \subset \mathbb{R}} a \ P(da) \quad (A = \sum_j a_j P_j)$$

- **Probabilistic interpretation**: measuring A gives random outcome $A \in \{a_j\}$

 $$\mathbb{P}[A = a_j] = p_j = \text{Tr}(\rho P_j)$$
A measurement on \mathcal{H} with outcomes in (Ω, Σ) is a linear map

$$M : \mathcal{T}_1(\mathcal{H}) \rightarrow L^1(\Omega, \Sigma, \mathbb{P})$$

such that $p_\rho := M(\rho)$ is a probability density for each state ρ.

Any M is of the form

$$\mathbb{P}_\rho(E) = \text{Tr}(\rho m(E))$$

for some Positive Operator valued Measure (POVM) $\{m(E) : E \in \Sigma\}$.

- **Naimark’s Theorem**
 Any measurement can be realised indirectly by ‘usual’ projection measurement in an ‘enlarged’ Hilbert space.
Set-up of quantum estimation problems

- **Quantum statistical model over** \(\Theta \):

\[
Q = \{ \rho_\theta : \theta \in \Theta \}
\]

- **Estimation procedure**: measure state \(\rho_\theta \) and devise estimator \(\hat{\theta} = \hat{\theta}(R) \)

- **Measurement design**:
 - which classical model \(\mathcal{P}^{(M)} = \{ \mathcal{P}_\theta^{(M)} : \theta \in \Theta \} \) is ‘best’?
 - trade-off between incompatible observables
 - optimal measurement depends on statistical problem
Any state on \mathbb{C}^2 is parametrized by a 3-D Bloch vector $\mathbf{r} = (r_x, r_y, r_z)$ with $\|\mathbf{r}\| \leq 1$

$$\rho_{\mathbf{r}} = \frac{1}{2} \begin{pmatrix} 1 + r_z & r_x - i r_y \\ r_x + i r_y & 1 - r_z \end{pmatrix}$$
Example: spin / two-level ion / qubit tomography

- Any state on \mathbb{C}^2 is parametrized by a 3-D Bloch vector $\mathbf{r} = (r_x, r_y, r_z)$ with $\| \mathbf{r} \| \leq 1$

$$\rho_{\mathbf{r}} = \frac{1}{2} \begin{pmatrix} 1 + r_z & r_x - i r_y \\ r_x + i r_y & 1 - r_z \end{pmatrix}$$

- 3 standard measurement bases corresponding to $s = x, y, z$ spin observables

$$|e^\pm_s\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix} \quad s = x, y$$

$$|e^\pm_s\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix} \quad s = y$$

$$|e^+_z\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |e^-_z\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad s = z$$

- Probability distributions: $P(o = \pm | s) = \frac{1 \pm r_s}{2}$, $s = x, y, z$

- n measurement repetitions \rightarrow counts $\{N(\pm | x), N(\pm | y), N(\pm | z)\} \rightarrow$ (LS) estimator

$$\hat{\rho}_n := \rho_{\mathbf{r}}, \quad \hat{r}_{x,y,z} := \frac{N(\pm | x, y, z) - N(- | x, y, z)}{n}$$

Boundary/positivity problem: for pure (rank one) states, estimator may not be physical (positive)
Example: estimating the direction of the spin vector

- **One-dim. model**: (small) rotation of $|\uparrow\rangle$

 $$|\psi_u\rangle := \exp \left(i u \sigma_x \right) |\uparrow\rangle = \cos(u) |\uparrow\rangle + \sin(u) |\downarrow\rangle$$
Example: estimating the direction of the spin vector

- **One-dim. model:** (small) rotation of $|\uparrow\rangle$

 $$|\psi_u\rangle := \exp(iu\sigma_x)|\uparrow\rangle = \cos(u)|\uparrow\rangle + \sin(u)|\downarrow\rangle$$

- ‘Most informative’ spin observable is σ_y

 $$\mathbb{E}(\sigma_y) = \sin(2u) \approx 2u$$
Example: estimating the direction of the spin vector

- **One-dim. model:** (small) rotation of $|\uparrow\rangle$

$$|\psi_u\rangle := \exp(iu\sigma_x) |\uparrow\rangle = \cos(u) |\uparrow\rangle + \sin(u) |\downarrow\rangle$$

- ‘Most informative’ spin observable is σ_y

$$\mathbb{E}(\sigma_y) = \sin(2u) \approx 2u$$

- **Two parameter model** $|\psi_{u_x,u_y}\rangle = \exp(i(u_y\sigma_x - u_x\sigma_y)) |\uparrow\rangle$

- Optimal measurements for u_x and u_y are incompatible: $[\sigma_x, \sigma_y] \neq 0$
Theorem [Helstrom, Holevo, Belavkin]

Let $Q = \{\rho^\theta : \theta \in \mathbb{R}^k\}$ be a ‘smooth’ quantum model.

For any unbiased measurement M with outcome $\hat{\theta} \in \mathbb{R}^k$

$$\text{Var}(\hat{\theta}) \geq I^{(M)}(\theta)^{-1} \geq F(\theta)^{-1}$$

where $I^{(M)}(\theta)^{-1}$ is the Fisher information of $\hat{\theta}$.

- Quantum Fisher information matrix

$$F(\theta)_{i,j} := \text{Tr}(\rho^\theta \mathcal{L}_{\theta,i} \circ \mathcal{L}_{\theta,j})$$

- Symmetric logarithmic derivatives: $\frac{\partial \rho^\theta}{\partial \theta_j} = \rho^\theta \circ \mathcal{L}_{\theta,j}$

* = several C.R. bounds exist depending on symmetrisation
Proof (projection valued measurements)

Measure observable X and get result $X \equiv \hat{\theta} \sim P_\theta$

- **Hilbert spaces** $L^2(\rho_\theta)$ and $L^2(\mathbb{R}, P_\theta)$

$$\langle A, B \rangle_\theta := \text{Tr}(\rho_\theta A \circ B) \quad \langle f(X), g(X) \rangle_\theta = E_\theta(f(X)g(X))$$

- **Fisher informations**

$$F(\theta) := \text{Tr}(\rho_\theta \mathcal{L}_\theta^2) = \| \mathcal{L}_\theta \|_{\theta}^2$$

$$I^{(M)}(\theta) := E_\theta(\ell^2_\theta(X)) = \| \ell_\theta(X) \|_{\theta}^2$$

- **Isometry**

$$I : L^2(\mathbb{R}, P_\theta) \to L^2(\rho_\theta)$$

$$f(X) \mapsto f(X)$$

$$E_\theta(f(X)g(X)) = \text{Tr}(\rho_\theta f(X) \circ g(X)) = \langle f(X), g(X) \rangle_\theta$$
The projection of \mathcal{L}_θ onto $IL^2(\mathbb{R}, \mathbb{P}_\theta)$ is $\ell_\theta(X)$.

Indeed for every $f \in L^2(p_\theta)$

$$\langle f(X), \ell_\theta(X) \rangle_\theta = \frac{d\mathbb{E}_\theta(f)}{d\theta} = \text{Tr} \left(\frac{d\rho_\theta}{d\theta} f(X) \right) = \langle f(X), \mathcal{L}_\theta \rangle_\theta$$

$$\implies \|\ell_\theta\|_\theta^2 \leq \|\mathcal{L}_\theta\|_\theta^2$$

Bound achieved (locally) at θ_0 by $X = \theta_0 1 + \frac{\mathcal{L}_\theta}{F(\theta)}$

- $\mathbb{E}_\theta X = \theta_0 + \frac{\text{Tr}(\rho_\theta \mathcal{L}_{\theta_0})}{F(\theta_0)} = \theta_0 + \frac{\text{Tr}(\rho_{\theta_0} \mathcal{L}_{\theta_0})}{F(\theta_0)} + \Delta \theta \frac{\text{Tr}(\rho_{\theta_0}' \mathcal{L}_{\theta_0})}{F'(\theta_0)} + O(\Delta \theta^2)$
 $$= \theta_0 + \Delta \theta + O(\Delta \theta^2) = \theta + O(\Delta \theta^2)$$

- $\text{Var}_{\theta_0}(X) = \mathbb{E}_{\theta_0} \left[(X - \mathbb{E}_{\theta_0} X)^2 \right] = \frac{\text{Tr}(\rho_{\theta_0} \mathcal{L}_{\theta_0}^2)}{F^2(\theta_0)} = \frac{1}{F_{\theta_0}}$
Trade-off between parameters

- **One-dimensional model**: C.R. bound can be achieved asymptotically

 1. measure fraction $\tilde{n} \ll n$ of systems to obtain **rough estimator** θ_0

 2. measure $L^{(n)}_{\theta_0} := L_{\theta_0} \otimes 1 \otimes \cdots \otimes 1 + \cdots + 1 \otimes 1 \otimes \cdots \otimes L_{\theta_0}$

 3. set $\hat{\theta}_n := \theta_0 + L^{(n)}_{\theta_0} / nF(\theta_0)$
Trade-off between parameters

- **One-dimensional model**: C.R. bound can be achieved asymptotically

 1. measure fraction $\tilde{n} \ll n$ of systems to obtain rough estimator θ_0

 2. measure $\mathcal{L}_{\theta_0}^{(n)} := \mathcal{L}_{\theta_0} \otimes 1 \otimes \cdots \otimes 1 + \cdots + 1 \otimes 1 \otimes \cdots \otimes \mathcal{L}_{\theta_0}$

 3. set $\hat{\theta}_n := \theta_0 + \mathcal{L}_{\theta_0}^{(n)}/nF(\theta_0)$

- **Multi-dimensional model**: $F(\theta)$ is achievable iff

\[
\text{Tr}(\rho_\theta [\mathcal{L}_{\theta,j}, \mathcal{L}_{\theta,i}]) = 0, \quad \forall 1 \leq i, j \leq k
\]

- Trade-off between estimation of different coordinates

- Optimal measurement depends on loss function
PART III: Quantum local asymptotic normality
Optimal estimation using local asymptotic normality

How to optimally estimate θ from an i.i.d. ensemble of states?

- Sequence of I.I.D. quantum statistical models $Q_n = \{\rho_\theta^\otimes n : \theta \in \Theta\}$
- Q_n converges (locally) to simpler Gaussian shift model Q
- Optimal measurement for limit Q can be pulled back to Q_n

\[
\Phi_\theta \sim P(H, \Phi_\theta) \quad H \sim P(H, \Phi_\theta) \quad \hat{\theta} \\
X_n \sim P(M_n, \rho_\theta) \quad \hat{\theta}_n \\
n \to \infty
\]
Quantum Gaussian states

- Quantum ‘particle’ with canonical observables Q, P on $\mathcal{H} = L^2(\mathbb{R})$

\[QP - PQ = i1 \]
(Heisenberg’s commutation relations)
Quantum Gaussian states

- Quantum ‘particle’ with canonical observables Q, P on $\mathcal{H} = L^2(\mathbb{R})$

 $$QP - PQ = i1$$ \quad \text{(Heisenberg's commutation relations)}

- Centred Gaussian state Φ

 $$\text{Tr}(\Phi \exp(-ivQ - iuP)) = \exp\left(-\frac{1}{2} \begin{pmatrix} u & v \end{pmatrix} V \begin{pmatrix} u \\ v \end{pmatrix}\right)$$

 with ‘covariance matrix’ V satisfying the uncertainty principle

 $$\det(V) = \begin{vmatrix} \text{Tr}(\Phi Q^2) & \text{Tr}(\Phi Q \circ P) \\ \text{Tr}(\Phi Q \circ P) & \text{Tr}(\Phi P^2) \end{vmatrix} \geq \frac{1}{4}$$
Examples

- **Vacuum state** $|0\rangle$
 \[V = \text{Diag}(\frac{1}{2}, \frac{1}{2}) \]

- **Thermal equilibrium state** $\Phi(s)$
 \[V = \text{Diag}(\frac{s}{2}, \frac{s}{2}) \]

- **Squeezed state** $|0, \xi\rangle$
 \[V = \text{Diag}(\frac{e^{-\xi}}{2}, \frac{e^{\xi}}{2}) \]
Quantum Gaussian shift model(s)

Displacement operator $D(u, v) := \exp(i v Q - i u P)$

- Coherent (laser) state
 $$|u, v\rangle := D(u, v)|0\rangle$$

- Displaced thermal state
 $$\Phi(u, v; s) = D(u, v)\Phi(s)D(u, v)^*$$

Q is the optimal measurement for estimating $u = \langle Q \rangle$

P is the optimal measurement for estimating $v = \langle P \rangle$

How to optimally estimate both displacement parameters?
Optimal measurement for Gaussian shift

- Oscillator \((Q, P)\) in state \(|u, v\rangle\)

- Oscillator \((Q', P')\) in vacuum state \(|0\rangle\)
Optimal measurement for Gaussian shift

- Oscillator \((Q, P)\) in state \(|u, v\rangle\)

- Oscillator \((Q', P')\) in vacuum state \(|0\rangle\)

- **Noisy coordinates commute:** \([Q_+, P_-] = 0\)

\[
Q_\pm := Q \pm Q' \\
P_\pm := P \pm P'
\]

- **Heterodyne measurement** \((Q_+, P_-)\) gives estimator \((\hat{u}, \hat{v}) \sim N((u, v), 1)\)
Optimal measurement for Gaussian shift

- Oscillator \((Q, P)\) in state \(|u, v\rangle\)

- Oscillator \((Q', P')\) in vacuum state \(|0\rangle\)

- Noisy coordinates commute:
 \[[Q_+, P_-] = 0\]

\[
Q_\pm := Q \pm Q', \\
P_\pm := P \pm P',
\]

- **Heterodyne** measurement \((Q_+, P_-)\) gives estimator \((\hat{u}, \hat{v}) \sim N((u, v), 1)\)

Theorem

The heterodyne measurement is optimal among covariant measurements and achieves the minimax risk for the loss function

\[|u - \hat{u}|^2 + |v - \hat{v}|^2.\]
Gaussian approximation (QCLT, CSS)

- n identically prepared spins

$$ \psi \frac{u}{\sqrt{n}}, \frac{v}{\sqrt{n}} := \exp \left(i \frac{v \sigma_x - u \sigma_y}{\sqrt{n}} \right) | \uparrow \rangle $$

- Collective observables $L_{x,y,z} := \sum_{i=1}^{n} \sigma^{(i)}_{x,y,z}$

- Quantum Central Limit Theorem

$$ \frac{L_x}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, 1) $$

$$ \frac{L_y}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, 1) $$

$$ \left[\frac{L_x}{\sqrt{n}}, \frac{L_y}{\sqrt{n}} \right] = \frac{2i}{n} L_z \xrightarrow{\text{l.l.n.}} 2i \mathbf{1} $$

[Holstein and Primakoff P.R. 1940] [Radcliffe J.Phys. A 1971]
Gaussian approximation (QCLT, CSS)

- n identically prepared spins

$$\left| \psi \frac{u}{\sqrt{n}}, \frac{v}{\sqrt{n}} \right\rangle := \exp \left(i \frac{v \sigma_x - u \sigma_y}{\sqrt{n}} \right) \left| \uparrow \right\rangle$$

- Collective observables $L_{x,y,z} := \sum_{i=1}^{n} \sigma_{x,y,z}^{(i)}$

- Quantum Central Limit Theorem

$$\frac{L_x}{\sqrt{n}} \xrightarrow{D} N(2u, 1)$$

$$\frac{L_y}{\sqrt{n}} \xrightarrow{D} N(2v, 1)$$

$$\left[\frac{L_x}{\sqrt{n}}, \frac{L_y}{\sqrt{n}} \right] = \frac{2i}{n} L_z \xrightarrow{l.l.n.} 2i1$$

[Holstein and Primakoff P.R. 1940] [Radcliffe J.Phys. A 1971]
Quantum Fisher information

$$F(\theta) = 4 \left\| \frac{d\psi}{d\theta} \right\|^2 = 4 \text{Var}_\psi(G) = 4 \langle \psi \left| G^2 \right| \psi \rangle$$

total generator $G(n) := G^{(1)} + \cdots + G^{(n)}$

Standard scaling: quantum Fisher information scales linearly in n

$$F_n(\theta) = 4 \text{Var}(G(n)) = 4n \text{Var}(G)$$
Convergence to Gaussian model for i.i.d. ensembles

- **Quantum data:** ensemble of n identically prepared systems
 \[
 |\psi_\theta\rangle \otimes^n := \left(e^{i \theta G} |\psi\rangle \right) \otimes^n, \quad \langle \psi | G | \psi \rangle = 0
 \]

- **Local asymptotic normality (Gaussian approximation):**
 In an “uncertainty neighbourhood" of size $n^{-1/2}$ around θ_0, the overlaps of joint states are approximately equal to those of a Gaussian model with QFI $= F$
 \[
 \langle \psi_\theta \otimes^n | \psi_\theta \otimes^n \rangle = \psi \left|e^{i(u-v)G/\sqrt{n}} \right| \psi \rangle^n \rightarrow e^{(u-v)^2 F/8} = \left| \sqrt{F/2} u \right| \sqrt{F/2} v \right
angle
 \]

- **General LAN** for mixed states & multi-dimensional models

Definition

Let $Q_n := \{\rho_{\theta,n} : \theta \in \Theta\}$ and $Q := \{\rho_\theta : \theta \in \Theta\}$.

Then Q_n converges strongly to Q if there exist quantum channels T_n, S_n s.t.

\[
\lim_{n \to \infty} \sup_{\theta \in \Theta} \| T_n (\rho_{\theta,n}) - \rho_\theta \|_1 = 0
\]

\[
\lim_{n \to \infty} \sup_{\theta \in \Theta} \| \rho_{\theta,n} - S_n (\rho_\theta) \|_1 = 0
\]
Strong convergence of quantum models

Definition

Let $Q_n := \{\rho_{\theta,n} : \theta \in \Theta\}$ and $Q := \{\rho_{\theta} : \theta \in \Theta\}$.

Then Q_n converges strongly to Q if there exist quantum channels T_n, S_n s.t.

$$
\lim_{n \to \infty} \sup_{\theta \in \Theta} \| T_n (\rho_{\theta,n}) - \rho_{\theta} \|_1 = 0
$$

$$
\lim_{n \to \infty} \sup_{\theta \in \Theta} \| \rho_{\theta,n} - S_n (\rho_{\theta}) \|_1 = 0
$$

Theorem

- If $\rho_{\theta,n} = |\psi_{\theta,n}\rangle \langle \psi_{\theta,n}|$ and $\rho_{\theta} = |\psi_{\theta}\rangle \langle \psi_{\theta}|$ then strong convergence implies

 $$
 \lim_{n \to \infty} \langle \psi_{\theta_1,n} | \psi_{\theta_2,n} \rangle = \langle \psi_{\theta_1} | \psi_{\theta_2} \rangle, \quad (\text{for some choice of phases!})
 $$

- If Θ is finite the converse holds as well
\[\left\{ \rho_{u/\sqrt{n}} : u = (u_x, u_y, u_z) \right\} \text{ neighbourhood of } \rho_0 := \text{Diag}(\mu, 1 - \mu) \]

\[
\frac{\rho_{u/\sqrt{n}}}{\sqrt{n}} := U_n(u_x, u_y) \begin{bmatrix} \mu + \frac{u_z}{\sqrt{n}} & 0 \\ 0 & 1 - \mu - \frac{u_z}{\sqrt{n}} \end{bmatrix} U_n(u_x, u_y)^*
\]

\[
U_n(u_x, u_y) := \exp(i(u_y \sigma_x - u_y \sigma_y)/\sqrt{n})
\]
Local spin model and the Gaussian limit

\[\{ \rho_{u/\sqrt{n}} : u = (u_x, u_y, u_z) \} \] neighbourhood of \(\rho_0 := \text{Diag}(\mu, 1 - \mu) \)

\[
\rho_{u/\sqrt{n}} := U_n (u_x, u_y) \begin{bmatrix} \mu + \frac{u_z}{\sqrt{n}} & 0 \\ 0 & 1 - \mu - \frac{u_z}{\sqrt{n}} \end{bmatrix} U_n (u_x, u_y)^*
\]

\[U_n (u_x, u_y) := \exp(i(u_y \sigma_x - u_y \sigma_y)/\sqrt{n}) \]

Gaussian shift model: \(N_u \otimes \Phi_u \)

- Classical part: \(N_u := N(u_z, \mu(1 - \mu)) \)
- Quantum part: \(\Phi_u := \Phi \left(u_x \sqrt{2(2\mu - 1)}, u_y \sqrt{2(2\mu - 1)}; (2\mu - 1)^{-1} \right) \)
Theorem

Let \(\rho_{u,n} := \left(\frac{\rho_u}{\sqrt{n}} \right)^{\otimes n} \) be the state of \(n \) i.i.d. spins with \(\frac{1}{2} < \mu < 1 \).

Then there exist quantum channels \(T_n, S_n \) such that for any \(\eta < 1/4 \)

\[
\lim_{n \to \infty} \sup_{\|u\| < n \eta} \| T_n (\rho_{u,n}) - N_u \otimes \Phi_u \|_1 = 0,
\]

and

\[
\lim_{n \to \infty} \sup_{\|u\| < n \eta} \| \rho_{u,n} - S_n (N_u \otimes \Phi_u) \|_1 = 0.
\]

[Guta, Janssens and Kahn, C.M.P. 2008]
Idea of the proof

- **Block diagonal form** *(Weyl Theorem)*

\[
(C^2)^\otimes n = \bigoplus_{j=0,1/2}^{n/2} \bigoplus_{j=0,1/2}^{n/2} C^{2j+1} \otimes C^{d_j}
\]

\[
\rho_{u/\sqrt{n}}^{\otimes n} = \bigoplus_{j=0,1/2}^{n/2} p_{u,n}(j) \rho_{u,n}(j) \otimes \frac{1}{d_j}
\]

- **Classical part:** \(p_{u,n}(j) = P[L = j] \) with \(L \) the total spin

\[
L \approx L_z \sim \text{Bin}(\mu + u_z/\sqrt{n}, n) \xrightarrow{s.} N_u
\]

- **Quantum part:** embed conditional state \(\rho_{u,j} \) isometrically into \(L^2(\mathbb{R}) \)

\[
V_j : \mathcal{H}_j \rightarrow L^2(\mathbb{R})
\]

\[
T_j : \rho_{u,j} \mapsto V_j \rho_{u,j} V_j^*
\]
Isometric embedding

- Orthonormal bases

\[L_z |m, j\rangle = m |m, j\rangle \quad (\mathbb{C}^{2j+1}) \]
\[|k\rangle = H_k(x) e^{-x^2/2} \quad (L^2(\mathbb{R})) \]

- Ladder operators

\[\begin{cases} L_+ &:= L_x + i L_y \\ L_- &:= L_x - i L_y \end{cases} \quad \text{and} \quad \begin{cases} a &:= (Q + i P)/\sqrt{2} \\ a^* &:= (Q - i P)/\sqrt{2} \end{cases} \]
Local asymptotic normality in d-dimensions

- **Local model** around $\rho_0 = \text{Diag}(\mu_1, \ldots, \mu_d)$ with $\mu_1 > \mu_2 > \cdots > \mu_d > 0$

\[
\rho_u/\sqrt{n} = \begin{bmatrix}
\mu_1 + h_1/\sqrt{n} & \cdots & z^*_1, d/\sqrt{n} \\
\vdots & \ddots & \vdots \\
z_1, d/\sqrt{n} & \cdots & \mu_d - \sum_{i=1}^{d-1} h_i/\sqrt{n}
\end{bmatrix} \quad u = (h, z) \in \mathbb{R}^{d-1} \times \mathbb{C}^{d(d-1)/2}
\]

- **Gaussian shift model:** $N_u \otimes \Phi_u$

 - Classical part: $N_u := N(z, I_\mu^{-1})$

 - Quantum part: $\Phi_u := \bigotimes_{1 \leq j < k \leq d} \Phi \left(\frac{z_{j,k}}{2\sqrt{\mu_j - \mu_k}} ; \frac{\mu_j + \mu_k}{\mu_j - \mu_k} \right)$
Local asymptotic normality in d-dimensions

Theorem

Let $\rho_{u,n} := (\rho_u/\sqrt{n})^\otimes n$ be the state of n i.i.d systems with $\mu_1 > \cdots > \mu_d > 0$.

Then there exist quantum channels T_n, S_n such that

\[
\lim_{n \to \infty} \sup_{u \in \Theta_{n,\beta,\gamma}} \|T_n(\rho_{u,n}) - N_u \otimes \Phi_u\|_1 = 0
\]

\[
\lim_{n \to \infty} \sup_{u \in \Theta_{n,\beta,\gamma}} \|S_n(N_u \otimes \Phi_u) - \rho_{u,n}\|_1 = 0
\]

where

$$
\Theta_{n,\beta,\gamma} = \left\{ u := (z, d) : \|z\| \leq n^\beta, \|d\| \leq n^\gamma \right\}, \text{ with } \beta < 1/9, \gamma < 1/4.
$$

[Guta and Kahn, C.M.P. 2008]
Asymptotically optimal (adaptive) measurement procedure

Given n i.i.d. spins prepared in state ρ_0

1. Use $n^{1-\epsilon}$ copies to produce a rough estimator ρ_0

2. Map remaining $\tilde{n} = n - n^{1-\epsilon}$ states through $T_{\tilde{n}}$

3. Perform optimal Gaussian measurement and produce estimator

$$\hat{\theta}_n = \theta_0 + \hat{u}/\sqrt{\tilde{n}}$$
The Holevo bound is achievable

- **Holevo bound**: quantum statistical model \(\{ \rho^\theta : \theta \in \Theta \subset \mathbb{R}^k \} \)

 - \(X_\theta := (X_{\theta,1}, \ldots, X_{\theta,k}) \) s.t. \(\text{Tr}(\rho^\theta X_{\theta,i}) = 0, \quad \text{Tr}(\frac{\partial \rho^\theta}{\partial \theta_i} X_{\theta,j}) = \delta_{i,j} \)

 - \(Z(X_\theta)_{i,j} := \text{Tr}(\rho^\theta X_{\theta,j} X_{\theta,i}) \)

For any **unbiased** measurement with outcome \(\hat{\theta} \in \mathbb{R}^k \)

\[
\mathbb{E}(\|\hat{\theta} - \theta\|^2) \geq C(\theta) := \inf_{X_\theta} \text{Tr} (\text{Re}(Z(X_\theta)) + |\text{Im}(Z(X_\theta))|)
\]
The Holevo bound is achievable

- **Holevo bound**: quantum statistical model \(\{ \rho^\theta : \theta \in \Theta \subset \mathbb{R}^k \} \)

- \(X_\theta := (X_{\theta,1}, \ldots, X_{\theta,k}) \) s.t. \(\text{Tr}(\rho^\theta X_{\theta,i}) = 0, \text{Tr}\left(\frac{\partial \rho^\theta}{\partial \theta_i} X_{\theta,j}\right) = \delta_{i,j} \)

- \(Z(X_\theta)_{i,j} := \text{Tr}(\rho^\theta X_{\theta,j} X_{\theta,i}) \)

For any unbiased measurement with outcome \(\hat{\theta} \in \mathbb{R}^k \)

\[
\mathbb{E}(\|\hat{\theta} - \theta\|^2) \geq C(\theta) := \inf_{X_{\theta}} \text{Tr} \left(\text{Re}(Z(X_\theta)) + |\text{Im}(Z(X_\theta))| \right)
\]

Theorem [M.G. and J. Kahn 2010]

There exist measurements \(\hat{\theta}_n \) for \(\left\{ (\rho^\theta)^{\otimes n} : \theta \in \Theta \right\} \) such that

- the Holevo bound is attained asymptotically

\[
\lim_{n \to \infty} n\mathbb{E}(\|\hat{\theta}_n - \theta\|^2) = C(\theta)
\]

- asymptotically, \(\hat{\theta}_n \) is locally minimax and Bayesian optimal for regular priors
Block diagonal form

\[(\mathbb{C}^d)^{\otimes n} = \bigoplus_{\lambda} \mathcal{H}_\lambda \otimes K_\lambda\]

\[\rho_{\mathbf{u}/\sqrt{n}}^{\otimes n} = \bigoplus_{\lambda} p_{\mathbf{u},n}(\lambda) \rho_{\mathbf{u},n}(\lambda) \otimes \text{tr}_\lambda\]

Young diagrams \(\lambda\) with \(d\) lines and \(n\) boxes

\[\lambda_1 \approx n\mu_1\]

\[\lambda_d \approx n\mu_d\]

Classical part:

\[p_{\mathbf{u},n} \approx \text{Mult} \left(\mu_1 + \frac{h_1}{\sqrt{n}}, \ldots, \mu_d - \sum_i \frac{h_i}{\sqrt{n}}; n \right) \implies N_\mathbf{u}\]
Bases and ladder operators in \mathcal{H}_λ

- **Non-orthogonal basis** \(|t, \lambda \rangle = |m, \lambda \rangle\)
 \[m = (m_{i,j} = \#j's \text{ in row } i : i < j) \]

- **Typical vectors are \(\approx\) orthogonal**

 If \(|m|, |l| = O(n^\eta)\) with \(\eta < 2/9\) then
 \[|\langle m, \lambda | l, \lambda \rangle| = O(n^{-c(\eta)}) \]

- **Approximate ladder operators**

 \[L_{2,3}^* : \begin{array}{cccccc}
 1 & 1 & 1 & 1 & 1 & 1 \\
 2 & 2 & 2 & 2 & 2 & 3 \\
 3 & 3 & 3 & 3 & 3 & 3
 \end{array} \rightarrow O(n^\eta) \begin{array}{cccccc}
 1 & 1 & 1 & 1 & 1 & 2 \\
 2 & 2 & 2 & 2 & 3 & 3 \\
 3 & 3 & 3 & 3 & 3 & 3
 \end{array} + O(n) \begin{array}{cccccc}
 1 & 1 & 1 & 1 & 1 & 1 \\
 2 & 2 & 2 & 2 & 3 & 3 \\
 3 & 3 & 3 & 3 & 3 & 3
 \end{array} \]

- **Approximate isometry**

 \[V_\lambda : |m\rangle \mapsto \bigotimes_{1 \leq j < k \leq d} |m_{j,k}\rangle \]
Outlook

- **Quantum statistics as non-commutative extension of statistical inference**
 - quantum Fisher information, Cramér-Rao bound
 - quantum CLT and local asymptotic normality
 - Quantum Stein Lemma, Chernoff bound
 - ...

- **Work in progress**
 - Convergence theory of quantum statistical models
 - Non-parametric (infinite dimensional) quantum statistics
 - quantum model selection, efficient estimation of large systems
 - quantum learning
 -